
320 TUGboat, Volume 41 (2020), No. 3

User-defined Type 3 fonts in LuaTEX
Hans Hagen

1 Introduction
This article describe the generic mechanism that is
present in LuaTEX 1.13 and following to deal with
user-defined Type 3 fonts. The examples shown here
might not work out well in ConTEXt because it has
its own font layer, which could interfere with low
level hooks, but the same principles apply. Beware:
in ConTEXt LMTX we do things a bit differently.

In a TEX environment Type 3 fonts are normally
used for bitmap (pk) fonts. However, they can be
useful for other purposes too. In LuaTEX a relatively
simple mechanism is provided to (ab)use this font
format.

2 Creation via callback
Defining a whole font in advance when only a few
shapes are used makes no sense. Apart from a waste
of time and memory it could, as a side effect, trigger
the inclusion of all kinds of resources. Therefore,
handling is delayed to the moment that the subset
of the font actually gets written to the PDF file.

In the frontend you can create virtual characters
but their rendering gets in-lined which is often okay,
but when you need for instance graphics (using the
image virtual command) that can be sub-optimal.
One can refer to characters in another font and that
font can be a (future) Type 3 font. It is only when the
document is finalized that the exact subset of glyphs
used in the font is known so that is the moment when
we deal with what needs to be included. This is done
with a plug-in: a single callback that does several
things in sequence.

The glyphs in a Type 3 font are streams of PDF
operators, a.k.a. char procs. When these are (inline)
bitmaps or graphic operators all is relatively easy, but
what if they are images or references to shapes from
fonts? In that case we also need to make sure that
resources are dealt with. We can cook up a complex
system of additional resource management, compara-
ble to pages and reused boxes, but it doesn’t pay off.
Instead we provide a couple of calls to the same call-
back, provide_charproc_data, to deal with that.
Because we can use TEX asynchronously (using the
mechanism for executing tokens) the relevant render-
ings can be done on demand.

When a Type 3 font is specified and when its
psname property is equal to the string none, a call-
back is triggered. Actually it is triggered three times.

• The first call is a preroll. It can be used to
do the preparations needed for successive calls.

Hans Hagen



TUGboat, Volume 41 (2020), No. 3 321

Between the first two calls the used characters of
fonts are identified again. This makes it possible
to use a reference to an xform in the mentioned
char proc stream that itself uses fonts, or we
can refer to other fonts directly. As so-called
xforms objects are managed independently they
don’t interfere with the font at hand. The first
argument is 1 which indicates that a preroll is
being done. The callback function also gets the
font id and character reference passed and no
return value is expected.

• The second call gets passed the number 2, the
font id, and the character index but this time
there have to be two return values: the width
(in basepoints) and an object number of the char
proc stream object. When an object number
is returned, a reference will be added to the
resource dictionary of the font.

• The third and last call is for housekeeping. This
call gets the number 3 passed and the font id.
The two expected return values are the scale fac-
tor in the font matrix (e.g. 0.001) and a string
that has additional entries in the resource dic-
tionary.1

Mechanisms like this are normally kept hidden
from the user. An example follows in a moment, but
first we explain the steps. For sure one needs more
code to integrate it properly. Don’t do it this way
in ConTEXt and expect it to work forever, because
we wrap and overload. Anyway, in the end there are
only a few cases to cover:

• A stream of mere graphical operators with no
dependencies on resources like fonts or objects.

• A stream with a reference to an xform which has
the actual content, in which case we need to add
a reference in the xobject resource dictionary of
the font’s.

• A stream with a reference to a font, in which
case we need to add a reference font resource
dictionary of the font’s.

• A stream of operators that do have dependencies
on whatever resources one can think of, in which
case we need to be able to add these to the fonts
resource dictionary.
And, because we can have additional fonts used

(either in a created xform or in the stream) we need
to analyze the Type 3 fonts first. We assume that

1 An earlier version had four separate calls: one for the
scale, two that looped (by multiple calls) over lists of xob-
jects and used fonts, and a final one for additional resources.
But because this mechanism is not meant for general use,
assembling the right entries is now delegated to the caller.

no nested Type 3 fonts are used. We also assume
that we handle all this at the Lua end.

This mechanism is pretty low level, for a good
reason: we’re already wrapping up the PDF file so we
cannot burden the engine too much with arbitrary
actions that mess up the process. Now, one can use
TEX to typeset the stream but in practice the stream
can best be constructed manually. One can always
use TEX to construct an xobject that gets referred to.
The good thing is that this feature doesn’t change
(or add) anything to the front-end.

We could have stuck to a more automated mech-
anism, for instance by expecting xform object ref-
erence, a width, height and depth (indicating some
shift) but then we also need to pass information
about using d0 or d1 so in the end one needs to
know about charprocs anyway and then we can as
well expect stream objects. A bit of a complicated
mess is compensated for by flexibility, but a mess it
remains. In a similar fashion using one callback with
numbers indicating each call’s purpose is nicer than
three different callbacks.

3 Examples
It is now time for a few examples. These are simple
ones, as it makes no sense to come up with many
pages of how to do this in for instance ConTEXt
(MkIV that is). We define a font with several solu-
tions mixed. It is not part of some font system. The
following example will work okay in MkIV (because
we typeset the LuaTEX manual with it).

First we define a couple of token registers and
fill them with some content which as you can see can
be anything.
\newtoks \MoreCrapA
\newtoks \MoreCrapB
\newcount\MoreCrapC

\MoreCrapA{\setbox0\hbox{%
\font\foo=dejavusansmono at 10bp\foo xyz}}

\MoreCrapB{\setbox0\hbox{%
\externalfigure[cow.pdf][height=4mm]}}

We also define a simple handler mechanism but
hook into the ConTEXt one if we run that macro
package (this hook is there only for the manual).
\startluacode

if context then
RegisterTypeThreeHandler

= fonts.handlers.typethree.register
else

local typethree = { }
callback.register("provide_charproc_data",

function(action,f,...)
if typethree[f] then

return typethree[f](action,f,...)

User-defined Type 3 fonts in LuaTEX



322 TUGboat, Volume 41 (2020), No. 3

end
end)
function RegisterTypeThreeHandler(id,

handler)
typethree[id] = handler

end
end

\stopluacode

Next we hard code a font table. Later we will see
what these character definitions do. Setting psname
to none signals that we want to trigger the callback.
\startluacode
local d = 655360

local f = {
-- the minimal amount of metadata:

["name"] = "MyFancyTestFont",
["psname"] = "none", -- trigger
["format"] = "type3",
["tounicode"] = true,

-- the minimal number of parameters:

["parameters"] = {
["extra_space"] = 0,
["quad"] = d,
["size"] = d,
["slant"] = 0,
["space"] = d/2,
["space_shrink"] = d/10,
["space_stretch"] = d/6,
["x_height"] = d/2,

},

-- five characters:

["characters"] = {
[100] = {

["commands"] = {
{ "down", d/3 },
{ "rule", d, d },

},
["depth"] = d/3,
["height"] = 2*d/3,
["width"] = d,
["tounicode"] = "0064",

},
[101]={

["depth"] = 0,
["height"] = d/2,
["width"] = d,
["tounicode"] = "0065",

},
[102]={

["depth"] = d/3,
["height"] = 2*d/3,
["width"] = d,

["tounicode"] = "0066",
},
[103]={

["depth"] = d/4,
["height"] = d/2,
["width"] = d,
["tounicode"] = "0067",

},
[104]={

["depth"] = 0,
["height"] = d/2,
["width"] = d,
["tounicode"] = "0068",

},
},

}

-- normally you do this at the TeX end and
-- integrate into a font definition mechanism
id = font.define(f)

token.set_macro(
"MyTestFont",
"\\setfontid " .. tostring(id) .. "\\relax "

)
tex.setcount(

"MoreCrapC",
id

)
\stopluacode

The font is defined and as you can see, we don’t
need to have any meaningful rendering yet; that is
what we do next. Now, if you don’t get what happens
here by looking at it, this mechanism is not for you.
We’re talking rather low-level PDF combined with
the interface to PDF objects and streams.

For this example font the preroll step will
construct some boxes with content. The flushed
objects are later referenced by a name (/Xnnn in
our case) bound to a form object (m 0 R). Before
the assembly stage kicks in, the backend will check
what fonts are used again so that referenced fonts
get included. The assemble routine uses low level
Type 3 directives that are explained in the PDF
reference manuals. You have to make sure that no
tricky dependencies on other Type 3 fonts occur.
The wrapup function takes care of communicating
the used resources.
\startluacode
local usedobjects = { }
local usedfonts = { }
local usedfontid = tex.getcount("MoreCrapC")

local function preroll(f,c)
if c == 103 then

tex.runtoks("MoreCrapA")

Hans Hagen



TUGboat, Volume 41 (2020), No. 3 323

usedobjects[c]
= tex.saveboxresource(0,nil,nil,true)

elseif c == 104 then
tex.runtoks("MoreCrapB")
usedobjects[c]

= tex.saveboxresource(0,nil,nil,true)
end

end

local function assemble(f,c)
if c == 101 then

local r = pdf.immediateobj(
"stream",
"1000 0 d0 10 w 0 1 0 rg "
.. "0 0 1000 500 re F"

)
return r, 10

elseif c == 102 then
local r = pdf.immediateobj(

"stream",
"1000 0 d0 10 w 1 0 0 rg "
.. "0 -333 1000 1000 re F"

)
return r, 10

elseif c == 103 then
local r = pdf.immediateobj(

"stream",
"1000 0 d0 55 0 0 100 0 -200 cm /X103 Do"

)
return r, 10

elseif c == 104 then
local r = pdf.immediateobj(

"stream",
"1000 0 d0 55 0 0 50 60 -50 cm /X104 Do"

)
return r, 10

else
return 0, 0

end
end

local function wrapup(f,c)
local resources = ""

if next(usedobjects) then
local t = { }
for k, v in pairs(usedobjects) do

table.insert(t,"/X" .. k .. " " .. v
.. " 0 R ")

end
resources = resources .. "/XObject << "

.. table.concat(t) .. ">>"
end

if next(usedfonts) then
local t = { }
for k, v in pairs(usedfonts) do

table.insert(t,"/F" .. k .. " " .. v
.. " 0 R ")

end
resources = resources .. "/Font << "

.. table.concat(t) .. ">>"
end

return 0.001, resources
end

local function usedfonthandler(action,...)
if action == 1 then

return preroll(...)
elseif action == 2 then

return assemble(...)
elseif action == 3 then

return wrapup(...)
else

-- won’t happen
end

end

RegisterTypeThreeHandler(usedfontid,
usedfonthandler)

\stopluacode

The last thing we do is register this plug-in. An
example of using the font is this:
\MyTestFont
\char100\char101
\char100\char102
\char100\char103
\char100\char104
\char100

And the output (grayscaled for print; the second
character is a green bar and the fourth is a red
square):

So, to summarize what we do: the implemented
method lives in the backend and leaves the frontend
untouched. The backend recognizes a user Type 3
font, and just injects references to charproc streams
that can, but are not required to, refer to one xform
per charproc. This is about as simple as it could be
made with only minimal overhead but it (probably)
still has enough potential.

As with the rest of those Lua driven features of
LuaTEX, you don’t need to be a mastermind to cook
up solutions. Of course you should limit yourself
to what really makes sense. That said, practice
has shown that often whatever opening the program
provides, it will be abused, and I expect the same for
this mechanism. Just don’t blame the engine when
the produced PDF misbehaves.

� Hans Hagen
http://pragma-ade.com

User-defined Type 3 fonts in LuaTEX


	Introduction
	Creation via callback
	Examples

