TUGDboat, Volume 38 (2017), No. 1

SILE: A new typesetting system

Simon Cozens

Abstract

SILE is a new typesetting system, influenced by
TEX but written from scratch in Lua. While still
in the early stages of development, it holds po-
tential as a typesetting system designed for unsu-
pervised automated typesetting, especially in non-
Latin scripts. SILE can be obtained from http:
//www.sile-typesetter.org/.

1 Introduction

In 2012, T wrote a typesetting system by mistake.

As part of my work for a small publishing com-
pany, I wrote a simple Perl script to automate the
production of book covers. However, I soon discov-
ered that the typesetting of the back cover blurb
was unacceptable without proper justification. I
ported Bram Stein’s JavaScript version [8] of the
original TEX justification algorithm [5] to Perl. Since
there was already a Perl implementation [4] of TEX’s
hyphenation algorithm [6], T added support for hy-
phenation at the same time.

Now I had something which could reliably type-
set paragraphs to PDF ... well, you can probably
guess the rest. Adding a page builder was the ob-
vious next step, and soon penalties, skips, glues
and the rest followed. The project was rewritten in
JavaScript, and then finally in Lua.

Why does the world need another typesetting
system? Of course, it doesn’t. But sometimes it’s
a good idea to reinvent the wheel; that’s how we
get better wheels. If we never reinvented wheels in
the software industry, this journal would be called
troffboat. And a friend who works in Bible type-
setting let me know about a number of things that
current automated typesetters can’t do well —col-
umn balancing with multi-page lookbehind and grid
typesetting; layout of parallel polyglots across page
spreads; and so on—which gave me a number of
goals.

Because of these goals and my own interest in
non-Latin scripts, SILE has developed a focus on
multilingual typesetting, particularly with complex
and minority scripts, and the unsupervised layout of
large, complex documents. SILE will see a 1.0.0 re-
lease when it is capable of taking a Unified Scripture
XML [7] Bible translation and an appropriate class
file, and producing a print-ready Bible of quality
equivalent to that of a human typesetter. Even if I
never achieve it, I'm having fun trying.

23

2 SILE’s Component Parts

One of the advantages of writing a typesetting sys-
tem in 2012 rather than in 1982 is that most of
the hard work is already done for you. As we have
mentioned, core typesetting algorithms are readily
available; Unicode, together with its standard an-
nexes and technical reports, describes good solutions
to many of the problems of multilingual data rep-
resentation; OpenType fonts and shaping engines
help with the layout of complex scripts; embedded,
interpreted languages won out over macro processors;
and the world has effectively standardised on PDF
as a document format.

A bird’s eye view of SILE is shown in fig. 1.
Text is consumed, and is reordered according to the
Unicode Bidirectional Algorithm [9]. Then each run
of text, together with its font, language, direction
and other settings, is passed to the HarfBuzz [1]
shaping engine. HarfBuzz returns a stream of glyph
IDs and metrics, which are then assembled into a
list of nodes, either by language-specific processors
or by the default Unicode processor. The nodes are
fed to the familiar H&J algorithms and collected into
vboxes, vboxes into frames, frames into pages, and
pages are finally output as PDF.

The choice of Lua as an implementation lan-
guage hinged on a number of factors; obviously there
are some benefits to using a language which is famil-
iar to a pre-existing community of typesetting soft-
ware engineers, although I have no strong desire to
‘convert’ anyone! But there are also benefits to using
an interpreted language for implementation: first,

Bidi processing
(1cv)

Font selection
(fontconfig /
Mac native)

\ A
Shaping

(harfbuzz)

l

| Language support |

l

Line/page breaking
(Knuth algorithms)

i

PDF generation
(libtexpdf)

Figure 1: SILE’s component parts

SILE: A new typesetting system

24

TUGDboat, Volume 38 (2017), No. 1

\SILE{}.registerCommand("tableofcontents:item", function (options, content)

\SILE{}.settings.temporarily(function ()

\SILE{}.settings.set("typesetter.parfillskip", \SILE{}.nodefactory.zeroGlue)

\SILE{}.call("tableofcontents:level™
\SILE{}.process(content)
\SILE{}.call("dotfill")

. options.level ..

"item", {}, function ()

\SILE{}.typesetter:typeset (options.pageno)

end)
end)
end)

Figure 2: Lua code to typeset a TOC entry

Lua is designed as an embedded language, which
means that SILE can provide a complex text lay-
out system for embedding within other applications.
(For instance, there is a SILE preview plugin for the
Glyphs font editor.) It also means that any area
of SILE’s operation can be overridden or extended,
not just those with pre-defined hooks. For instance,
the grid typesetting package works by overriding the
leading calculation; similarly, when setting Japanese
text on a hanmen grid, there is no need to apply full
best-fit paragraph composition —it’s fine to replace
the Knuth-Plass algorithm with a simple first-fit line
breaker for speed.

SILE’s modular design also means that every-
thing is pluggable. I tried a number of different PDF
libraries while developing SILE; the first versions
used Cairo [2], but Cairo’s PDF surface is fairly lim-
ited, and does not allow for the generation of PDF
annotations, links and outlines —not to mention any
of the tagged and structured markup required for
accessible PDFs—so I started looking for alterna-
tives: Haru, PoDoFo and others. Since the output
system has a well-defined interface, I could easily
test a new PDF generation library by slotting a new
output implementation in place. Similarly, SILE’s
regression test system works by plugging in a custom
outputter which produces a textual representation
instead of a PDF; this can then be compared against
the expected results using diff.

Incidentally, the PDF library I settled on was
both an old one and a new one: I extracted the
PDF generation backend from dvipdfmz and made
it available as a library—libtexpdf. This was the only
PDF generation system I could find which allowed
me to address glyphs by ID, and also to add arbitrary
PDF operators to the output.

Apart from C interfaces to HarfBuzz, ICU (the
Unicode support library), fontconfig and libtexpdy,
the core of SILE comprises a little under 5,000 lines of
Lua code. (10% of which is made up of a somewhat
literal port of TEX’s line breaking algorithm.) This

Simon Cozens

makes sense—with so much done by third-party
libraries, there is relatively little left for SILE to do
by itself.

3 Input formats, packages and classes

Just like the output system, SILE’s input system
is modular. The first input format implemented
for SILE was XML —the idea being that SILE is to
be used to typeset data produced by other software,
such as translation databases, rather than documents
constructed by hand; XML is both an easy format
to parse and an easy format for other software to
output. But while SILE needs to ingest XML, for
whatever reason people wanted to hand-generate
SILE documents, and so SILE added a parser for a
simple, TEX-like input format.

The TgX-like format is only superficially TEX-
like. It is, essentially, simply another way of rep-
resenting an XML tree structure. These two SILE
documents are equivalent:

\begin{foo} <foo>

Text Text

\bar [this=that] <bar this="that"/>
\end{foo} </foo>

The implementation of <foo> and <bar> is, of
course, up to the user. In this sense, SILE is similar
to an XML stylesheet processor: alongside a doc-
ument must come a set of processing expectations
which define how the tags will be typeset. SILE’s
\define command provides an extremely restricted
macro system for implementing simple tags, but you
are deliberately forced to write anything more com-
plex in Lua. (Maxim: Programming tasks should
be done in programming languages!) For example,
the command to typeset a table-of-contents item is
implemented by the code in fig. 2. This expects a
command of the form:

\tableofcontents:item[level=2,pageno=3]
{Something}

TUGDboat, Volume 38 (2017), No. 1

and passes the text and page number separated by
leaders to the command which styles a level 2 TOC
entry; this command, which is more easily imple-
mented with a \define at the SILE level, will in
turn set the appropriate font size, style and so on.

Lua code is loaded into SILE as packages or
classes, similar to INTEX — classes define the layout
and key formatting expectations for tags, while pack-
ages provide additional functionality. Classes can be
inherited (in the object-oriented programming sense)
from other classes; SILE comes with a number of
basic document classes but the expectation would be
that each substantial document project would define
its own class.

Since classes can be loaded even before the docu-
ment is opened, they can do things such as providing
a new input format. The markdown class does just
this, implementing a parser and providing processing
expectations for Markdown documents.

Naturally there are not currently anything like
as many packages for SILE as for TEX derivatives.
But fig. 3 is (an abridged version of) my favourite.
This implements boustrophedon text by overriding
the typesetter’s function for turning horizontal lists
into vertical lists. After the default implementation,
the vertical list is inspected, and a custom whatsit
(swap) is inserted after every vbox. When the whatsit
is output, the typesetter’s direction is reversed: if
the previous line was left-to-right, the next line will
be right-to-left, and vice versa.

SILE’s programmability leads itself to experi-
mentation and implementation of new technologies;
support for OpenType color fonts was added as an
external package in 85 lines of code, and rudimentary
support for OT fonts with SVG outlines has recently
been added.

4 The language support system

While Harfbuzz and Unicode provides a lot of what
SILE needs to support complex scripts, different lan-
guages have different typographic conventions. For
instance, correctly typesetting Japanese is not a mat-
ter of inserting line break opportunities between ev-
ery pair of characters; Japanese kinsoku-shori rules
stipulate that some punctuation characters cannot
start lines and others cannot end lines. Addition-
ally, characters are generally set on a fixed grid,
but spacing is reduced around brackets and commas.
These language-specific typesetting conventions are
encoded in SILE’s language support system, which
assembles the stream of glyphs from the shaper into
nodes, giving SILE a chance to implement hyphen-
ation points, line breaking opportunities and so on.

25

local swap = \SILE{}.nodefactory.newVbox({})
swap.outputYourself = function(self,typesetter)
typesetter.frame.direction =
typesetter.frame.direction == "LTR-TTB"
and "RTL-TTB" or "LTR-TTB"
typesetter.frame:newLine ()
end

\SILE{}.typesetter.boxUpNodes = function(self)
local vboxlist =
\SILE{}.defaultTypesetter.boxUpNodes (self)
local nl = {}
for i=1,#vboxlist do
nl[#nl+1] = vboxlist[i]
if nl[#nl]:isVbox() then
nl[#nl1+1] = swap
end
end
return nl
end

Figure 3: The boustrophedon package, abridged.

Another pertinent example is that of many south-
east Asian languages which are written without inter-
word spaces but which line break between graphical
syllable clusters, the clusters being determined by
morphological analysis. SILE’s support for Javanese
uses a Parsing Expression Grammar [3] to detect syl-
lable boundaries and insert penalties into the node
stream to specify potential break points. Access to
ICU means that language-specific casing rules (such
as the Turkish i/I and 1/I combinations) are correctly
applied.

SILE does not assume any default directionality,
meaning that left-to-right typesetting is not priv-
ileged over right-to-left processing. Indeed, sup-
porting Mongolian, which is traditionally written
top-to-bottom and left-to-right, is simply a matter
of telling the typesetter about the new direction:
\thisframedirection{TTB-LTR}.

Figure 4 demonstrates SILE’s multi-script ca-
pabilities; notice how SILE has respected the typo-
graphic conventions of each script, and how the RTL
texts (Arabic and Hebrew) have been reordered ac-
cording to the conventions of mixed directionality
typesetting. In the source file, each text is marked up
with its language so that SILE can select the appropri-
ate set of rules, but the bidi reordering is performed
by default and requires no additional markup.

5 Frames

In our overview of SILE’s component parts, we men-
tioned in passing that vboxes are assembled into
frames and frames are assembled into pages. Frames

SILE: A new typesetting system

26

My hovercraft is full of eels. delzas zalgs
oswalsl PU uwtwntwu odwayatpny Liigm&
L SR 2oRERg G IR-a SF 3@ Og
m %ecrf)élo emo%:oaoégn é]:ﬂ{:@dg%@éﬁe§
Olooodi FEVEBALEER T B Ado bmdsemcoo
Ls3s9Mm damndBby LszLgs 33gmay3bydoo To
XOPepkpdpt pov efvar yepdro xéhia Hw nannn
onmbra nRon AR HERM arelt A1a FuHET § o
g DIAw< >cccol<l CCio™ <Ly
DARN=DZ T MIEBTVLIEVWTY 1§
inHguMmgnuN:IBh 9 U SH3etmE
£ 02 7t= Xt A0 a)OR alOB60-
BalSdo MOO® Ol8IEIe80em 6@ g
B ODes ¢es 88 gmerer gemeu
Blemmwl eN6vmi(g LBetT& 6T

1

Figure 4: SILE’s multi-script capabilities

are areas on the page where text is to be set. The
frames for a page are generally defined by the docu-
ment’s class, but can be modified dynamically. For
instance, footnotes are generally implemented by
placing a zero-height frame at the bottom of the
main content area. As footnotes are placed on a
page, the footnote frame expands and the content
frame shrinks. This allows for interesting layout pos-
sibilities: in a two column layout, the footnotes can
be placed at the end of the second frame, or across
the bottom of two frames, or in a separate area of
the page altogether.

Frame layouts are generally specified relatively
rather than absolutely; for instance, fig. 5 shows the
frame declarations of the standard book class. The
dimensions %pw and %ph refer to percentage of page
width and page height respectively.

6 Various neat hacks

SILE packages implement a number of interesting
ideas; in no particular order: best-fit page breaking;
access to OpenType font features; parallel polyglot
layout (see fig. 6); justification alternates (rewriting
the text to improve justification); font fallback on
missing glyphs; grid typesetting; Japanese vertical
typesetting and ruby (furigana) support; automatic
generation of font specimens; a BIBTEX-like bibliog-
raphy manager implemented at runtime within the
typesetter; support for producing Structured and
Tagged PDFs.

Simon Cozens

TUGDboat, Volume 38 (2017), No. 1

7 Challenges remaining

While SILE has been used successfully to produce a
number of print books and articles, it is still not a fin-
ished product. The development team is very small;
I’'m the primary developer, with Caleb Maclennan
and Khaled Hosny as notable contributors. Devel-
opment happens on github and we are very open
to issues and pull requests. However, there are a
number of challenges remaining.

The lack of a Windows distribution is currently
hampering adoption; the pushback routine (which
disgorges the vertical list back onto the horizontal
list after every frame break, in case the next frame
has a different width) is a perennial source of mind-
boggling bugs; and currently we lack a good solution
for moving between multi-column and single-column
layout and back again, which is a blocker for serious
Bible typesetting.

We are also still working out how best to use
SILE. For instance, I initially anticipated that the
frames feature could be used to solve all kinds of
layout challenges —drop caps, wrapping text around
floated figures and so on. After some investigation we
have found that frames are better suited to page-level
layout, and other solutions such as nested vboxes
and custom packages work better for altering layout
within a frame. As more packages are developed,
idiomatic use of the system will become more clearly
defined.

I am often asked about typesetting of mathe-
matics. My usual glib answer is that there is not very
much mathematics in the Bible! However, I would
like to see an implementation of math typesetting
for SILE. The current plan is to find a way to call
out to MathJax to perform the layout computations,
and have SILE lay out the resulting nodes. How-
ever, SILE’s development is essentially driven by user
requests; I don’t need math for the kind of books
I'm typesetting, but if this is something you need, I
would be glad to help you implement it!

8 Conclusion

I have deliberately avoided making comparisons be-
tween SILE and TEX derivatives in this article, at-
tempting to introduce SILE on its own merits. In
a sense there is no comparison. TEX is an incredi-
bly mature and stable code base with a large and
vibrant community; SILE is new, fast-moving and
buggy, with few active developers. But I believe that,
with time and development, SILE has the potential
to provide better output than TEX for complex au-
tomated layout of non-Latin documents. It’s also
really fun to mess about with!

TUGDboat, Volume 38 (2017), No. 1

content = {
left = "8.3)pw", right = "86%pw",
top = "11.6%ph", bottom = "top(footnotes)"
},
runningHead = {
left = "left(content)", right = "right(content)",

top = "top(content)-8)%ph", bottom = "top(content)-3%ph"

},

footnotes = {
left = "left(content)", right = "right(content)",
height = "0", bottom = "83.3%ph"

},

folio = {
left = "left(content)", right = "right(content)",
top = "bottom(footnotes)+3%ph",
bottom = "bottom(footnotes)+5%ph"

}

27

Figure 5: Frame layout in the standard book class

1 4 , ~

Ei olv ouvnyépbnre 16

Xpioté, 1& Gve Cnrelre,
v s ,

ou 6 Xp1oTg toTiv év Be-

E1dt o0 Beoll kabrpevog:

2 14 Sve PPOVEITE, m) TA

emi g yfig.

3 amebavere yap kai f
Lo Up@v KékpuTITaL OUV

¢ Xp1otd év 16 Bedp-

4 Stav 6 Xplotog gave-
PO, N Ton Updv, TéTE
Kkod Upei oUv alT@ pave-

pwBroecBe év SSEN.

5 1 Nexpooare ouv T&
pEAN T& € TG Yig, TTOop-
veiav dxabapoiav wébog
émBupiav kaki, kai TV
TAeoveEiav, fiTic éoTiv €~
Swhoharpia,

661" & Epyetan 1) Opy1 ToU
Beol [émi Toug uioUg Thig
amerBeiac].

7 év olg kol Upeig Trepre-
Tatoaté ToTe, Ote ECijTE
¢v TouToIC:

Therefore, if you have been
raised with Christ, keep
seeking the things above,
where Christ is, seated at
the right hand of God.

Keep thinking about things
above, not things on the
earth,

for you have died and
your life is hidden with
Christ in God.

When Christ (who is your
life) appears, then you
too will be revealed in
glory with him.

So put to death what-
ever in your nature be-
longs to the earth: sex-
ual immorality, impurity,
shameful passion, evil de-
sire, and greed which is
idolatry.

Because of these things
the wrath of God is com-
ing on the sons of disobe-
dience.

You also lived your lives
in this way at one time,
when you used to live
among them.

ST, blrlditiE, ¥YR
bR S s D
TIhe, Lichrboz
KBS, 2T, F
YA BT DRI
TEohET,

Lichzbolcbz@o,
i koo b oichzgl i
Vil AhIwn,

Hht B BWAE DT
bHoT, bt DhmE
F YA EICHONIE
INTRBDTY,

HrlhPlomTHsXY
AFDBND EE Hil
LR D N P
Hlc@ENTEHASTL &
I

Ero, bz bo, §
bbb, AL BTV, AR
AT AT B,
BIOAREH TR 2 X
Vo AR BEALIE IS 00
5%\,

INS5DT EDWZIT,
DY FAMEM R 72 B 12
U3

Bt hito b P2 o &
IBIEDHRIZVIEFI
X, 2ot >THEATY
L7,

Figure 6: A parallel triglot: different scripts, different
column widths, different font sizes

References

[1]
2]

Behdad Esfahbod. HarfBuzz.
http://harfbuzz.org/, June 2016.

Bryce Harrington. PDF surfaces.
https://www.cairographics.org/manual/
cairo-PDF-Surfaces.html, April 2016.
Roberto Ierusalimschy. Lua parsing expression
grammars. http://www.inf.puc-rio.br/
~roberto/lpeg/, September 2015.

Alex Kapranoff. Text::Hyphen. http:
//search.cpan.org/perldoc?Text: :Hyphen,
October 2015.

Donald E. Knuth and Michael F. Plass.
Breaking paragraphs into lines. Software —
Practice and Experience, 11(11):1119-1184, 1981.
Franklin Mark Liang. Word Hy-phen-a-tion
by Com-put-er. PhD thesis, Department of
Computer Science, Stanford University, 1983.
http://tug.org/docs/liang/.

United Bible Societies. Unified Scripture XML.
https://ubsicap.github.io/usx/, 2016
Bram Stein. TEX line breaking algorithm in
JavaScript. https://github.com/bramstein/
typeset, April 2016.

The Unicode Consortium. UAX #9:

Unicode bidirectional algorithm. http:
//unicode.org/reports/tr9/, May 2016.

¢ Simon Cozens
Worldview Center for Intercultural Studies
St Leonards, Tasmania
Australia
simon (at) simon-cozens dot org
http://wuw.simon-cozens.org

SILE: A new typesetting system

