
TUGboat, Volume 35 (2014), No. 1 57

Parsing PDF content streams with LuaTEX

Taco Hoekwater

Abstract

The new pdfparser library in LuaTEX allows parsing
of external PDF content streams directly from within
a LuaTEX document. This paper explains its origin
and usage.

1 Background

Docwolves’ main product is an infrastructure to fa-
cilitate paperless meetings. One part of the func-
tionality is handling meeting documents, and to do
so it offers the meeting participants a method to
distribute, share, and comment on such documents
by means of an intranet application, as well as an
iPad app.

Meeting documents typically consist of a meet-
ing agenda, followed by included appendices, com-
bined into a single PDF file. Such documents can
have various revisions, for example if a change has
been made to the agenda or if an appendix has to
be added or removed. After such a change, a newly
combined PDF document is re-distributed.

Annotations can be made on these documents
and these can then be shared with other meeting
participants, or just communicated to the server for
safekeeping. Like documents, annotations can be
updated as well.

All annotations are made on the iPad, with an
(implied) author and an intended audience. Anno-
tations apply to a specific part of the source text,
and come in a few types (highlight, sticky note, free-
hand drawing). The iPad app communicates with
a network server to synchronize shared annotations
between meeting participants.

2 The annotation update problem

The server–client protocol aims to be as efficient as
possible, especially in the case of communication
with the iPad app, since bandwidth and connection
costs can be an issue.

This means that for any annotation on a refer-
enced document, only the document’s internal identi-
fication, the (PDF) page number, and the beginning
and end word indices on the page are communicated
back and forth. This is quite efficient, but gives rise
to the following problem:

When a document changes, e.g. if an extra
meeting item is added, all annotations follow-

Editor’s note: Originally published in ConTEXt Group:
Proceedings, 6th meeting, pp. 19–23. Reprinted with
permission.

ing that new item have to be updated because
their placement is off.

The full update process is quite complicated; the
issue this paper deals with is that the server software
needs to know what words are on any PDF page, as
well as their location on that page, and therefore its
text extraction process has to agree with the same
process on the iPad.

3 PDF text extraction

Text extraction is a two-step process. The actual
drawing of a PDF page is handled by PostScript-style
postfix operators. These are contained in objects
that are called page content streams.

After decompression of the PDF, the beginning
of a content stream might look like this:

59 0 obj

<< /Length 4013 >>

stream

0 g 0 G

1 g 1 G

q

0 0 597.7584 448.3188 re f

Q

0 g 0 G

1 0 0 1 54.7979 44.8344 cm

...

Here g, G, q, re, f, Q, and cm are all (postfix)
operators, and the numeric values are all arguments.
As you see, not all operators take the same number
of arguments (g takes one, q zero, and re four).
Other operators may take, for instance, string-valued
arguments instead of numeric ones. There are a bit
more than half a dozen different types.

To process such a stream easily, it is best to
separate the task (at least conceptually) into two
separate tasks. First there is a lexing stage, which
entails converting the raw bytes into combinations
of values and types (tokens) that can be acted upon.

Separate from that, there is the interpretation
stage, where the operators are actually executed with
the tokenized arguments that have preceded it.

3.1 PDF text extraction on the iPad

It is very easy on an iPad to display a representation
of a PDF page, and Apple also provides a convenient
interface to do the lexing of PDF content streams
that is the first step in getting the text from the page.
But to find out where the PDF objects are, one has to
interpret the PDF document stream oneself, and that
is the harder part of the text extraction operation.

3.2 PDF text extraction on the server

On the server side, there is a similar problem at a dif-
ferent stage: displaying a PDF is easy, and even literal

Parsing PDF content streams with LuaTEX



58 TUGboat, Volume 35 (2014), No. 1

text extraction is easy (with tools like pdftotext).
However, that does not give you the location of the
text on the page. On the server, Apple’s lexing inter-
face is not available, and the available PDF library
(libpoppler) does not offer similar functionality.

4 Our solution

We needed to write text extraction software that can
be used on both platforms, to ensure that the same
releases of server and iPad software always agreed
perfectly on the what and where of the text on the
PDF page.

Both platforms use a stream interpreter written
by ourselves in C, with the iPad software starting
from the Apple lexer, and the server software starting
from a new lexer written from scratch.

The prototype and first version of the newly
created stream interpreter as well as the server-side
lexer were written in Lua. LuaTEX’s epdf library —
libpoppler bindings for Lua, see below — were a
very handy tool at that stage. The code was later
converted back to C for compilation into a server-
side helper application as well as the iPad App, but
originally it was written as a texlua script.

A side effect of this development process is that
the lexer could be offered as a new LuaTEX extension,
and so that is exactly what we have done.

5 About the ‘epdf’ library

This library is written by Hartmut Henkel, and it
provides Lua access to the poppler library included
in LuaTEX. For instance, it is used by ConTEXt to
preserve links in external PDF figures.

The library is fairly extensive, but a bit low-level,
because it closely mimics the libpoppler interface.
It is fully documented in the LuaTEX reference man-
ual, but here is a small example that extracts the
page cropbox information from a PDF document:

local function run (filename)

local doc = epdf.open(filename)

local cat = doc:getCatalog()

local numpages = doc:getNumPages()

local pagenum = 1

print (’Pages: ’ .. numpages)

while pagenum <= numpages do

local page = cat:getPage(pagenum)

local cbox = page:getCropBox()

print (string.format(

’Page %d: [%g %g %g %g]’,

pagenum, cbox.x1, cbox.y1,

cbox.x2, cbox.y2))

pagenum = pagenum + 1

end

end

run(arg[1])

6 Lexing via poppler

As said above, a lexer converts bytes in the input
text stream into tokens, and these tokens have types
and values. libpoppler provides a way to get one
byte from a stream using the getChar() method,
and it also applies any stream filters beforehand, but
it does not create such tokens.

6.1 Poppler limitations

There is no way to get the full text of a stream as a
whole; it has to be read byte by byte.

Also, if the page content consists of an array of
content streams instead of a single entry, the separate
content streams have to be manually concatenated.

And content streams have to be ‘reset’ before
the first use.

Here is some example code for reading a stream,
using the epdf library:

function parsestream(stream)

local self = { streams = {} }

local thetype = type(stream)

if thetype == ’userdata’ then

self.stream = stream:getStream()

elseif thetype == ’table’ then

for i,v in ipairs(stream) do

self.streams[i] = v:getStream()

end

self.stream = table.remove(

self.streams,1)

end

self.stream:reset()

local byte = getChar(self)

while byte >= 0 do

...

byte = getChar(self)

end

if self.stream then

self.stream:close()

end

end

In the code above, any interesting things you
want to do are inserted at the ... spot. The example
makes use of one helper function, getChar, which
looks like this:

local function getChar(self)

local i = self.stream:getChar()

if (i<0) and (#self.streams>0) then

self.stream:close()

self.stream = table.remove(

self.streams, 1)

self.stream:reset()

i = getChar(self)

end

return i

end

Taco Hoekwater



TUGboat, Volume 35 (2014), No. 1 59

7 Our own lexer: ‘pdfscanner’

The new lexer we wrote does create tokens. Its Lua
interface accepts either a poppler stream, or an array
of such streams. It puts PDF operands on an internal
stack and then executes user-selected operators.

The library pdfscanner has only one function,
scan(). Usage looks like this:

require ’pdfscanner’

function scanPage(page)

local stream = page:getContents()

local ops = createOperatorTable()

local info = createParserState()

if stream then

if stream:isStream()

or stream:isArray() then

pdfscanner.scan(stream, ops, info)

end

end

end

The above functions createOperatorTable()

and createParserState() are helper functions that
create arguments of the proper types.

7.1 The scan() function

As you can see, the scan() function takes three
arguments, which we describe here.

The first argument should be either a PDF

stream object or a PDF array of PDF stream objects
(those options comprise the possible return values of
<Page>:getContents() and <Object>:getStream()

in the epdf library).
The second argument should be a Lua table

where the keys are PDF operator name strings and
the values are Lua functions (defined by you) that
are used to process those operators. The functions
are called whenever the scanner finds one of these
PDF operators in the content stream(s).

Here is a possible definition of the helper func-
tion createOperatorTable():

function createOperatorTable()

local ops = {}

-- handlecm is defined below

ops[’cm’] = handlecm

return ops

end

The third argument is a Lua variable that is
passed on to provide context for the processing func-
tions. This is needed to keep track of the state of
the PDF page since PDF operators, and especially
those that change the graphics state, can be nested.1

1 In Lua this could have been handled by upvalues or
global variables. This third argument was a concession made
to the planned conversion to C.

In its simplest form, the creation of this page
state looks like this:

function createParserState()

local stack = {}

stack[1] = {}

stack[1].ctm =

AffineTransformIdentity()

return stack

end

Internally, pdfscanner.scan() loops over the
input stream content bytes, creating tokens and col-
lecting operands on an internal stack until it finds
a PDF operator. If that operator’s name exists in
the given operator table, then the associated Lua
function is executed. After that function has run (or
when there is no function to execute) the internal
operand stack is cleared in preparation for the next
operator, and processing continues.

The processing functions are called with two
arguments: the scanner object itself, and the info

table that was passed as the third argument to
pdfscanner.scan.

The scanner argument to the processing func-
tions is needed because it offers various methods to
get the actual operands from the internal operand
stack.

7.2 Extracting tokens from the scanner

The lowest-level function available in scanner is
scanner:pop() which pops the top operand of the
internal stack, and returns a Lua table where the
object at index one is a string representing the type
of the operand, and object two is its value.

The list of possible operand types and associated
Lua value types is:

integer 〈number〉
real 〈number〉
boolean 〈boolean〉
name 〈string〉
operator 〈string〉
string 〈string〉
array 〈table〉
dict 〈table〉
In the cases of integer or real, the value is

always a Lua (floating point) number.
In the case of name, the leading slash is always

stripped.
In the case of string, please bear in mind that

PDF supports different types of strings (with different
encodings) in different parts of the PDF document,
so you may need to reencode some of the results;
pdfscanner always outputs the byte stream without
reencoding anything. pdfscanner does not differen-
tiate between literal strings and hexadecimal strings

Parsing PDF content streams with LuaTEX



60 TUGboat, Volume 35 (2014), No. 1

(the hexadecimal values are decoded), and it treats
the stream data for inline images as a string that is
the single operand for EI.

In the case of array, the table content is a list
of pop return values.

In the case of dict, the table keys are PDF

name strings and the values are pop return values.
While parsing a PDF document that is known

to be valid, one usually knows beforehand what the
types of the arguments will be. For that reason,
there are a few more scanner methods defined:

• popNumber() takes a number object off of the
operand stack.

• popString() takes a string object off . . .

• popName() takes a name object off . . .

• popArray() takes an array object off . . .

• popDict() takes a dictionary object off . . .

• popBool() takes a boolean object off . . .

A simple operator function could therefore look
like this. handlecm was used in an example above;
the PDF cm operator “concatenates” onto the current
transformation matrix. (The Affine... functions
used here are left as an exercise to the reader).

function handlecm (scanner, info)

local ty = scanner:popNumber()

local tx = scanner:popNumber()

local d = scanner:popNumber()

local c = scanner:popNumber()

local b = scanner:popNumber()

local a = scanner:popNumber()

local t = AffineTransformMake(a,b,c,d,tx,ty)

local stack = info.stack

local state = stack[#stack]

state.ctm =

AffineTransformConcat(state.ctm,t)

end

Finally, there is also the scanner:done() func-
tion which allows you to quit the processing of a
stream once you have learned everything you want
to learn. Specifically, this comes in handy while
parsing /ToUnicode, because there usually is trail-
ing garbage that you are not interested in. Without
done, processing only ends at the end of the stream,
wasting CPU cycles.

8 Summary

The new pdfparser library in LuaTEX allows parsing
of external PDF content streams directly from within
a LuaTEX document. While this paper explained its
usage, the formal documentation of the new library is
the LuaTEX reference manual. Happy LuaTEX-ing!

� Taco Hoekwater
Docwolves B.V.
http://luatex.org

Taco Hoekwater


