
TUGboat, Volume 34 (2013), No. 3 349

Plots in LATEX: Gnuplot, Octave, make

Boris Veytsman and Leyla Akhmadeeva

Abstract

Making scientific and engineering documents with
complex plots may be difficult and time-consuming.
This is especially true if data updates require re-
building of plots and documents. In this report a
workflow based on an integration of (LA)TEX, Gnuplot
and Octave using Makefiles in a Unix environment
is proposed and discussed in detail.

1 Introduction

Some time ago one of us (BV) worked on a report
about aircraft navigation accuracy. This report in-
cluded about forty charts of predicted errors as de-
pending on the aircraft altitude, location of surveil-
lance radios, etc. Then a coworker came to the
office to tell me that some parameters of the model
had changed and requested replotting all the charts.
“How long would it take to do it?”, he asked with some
trepidation, since the deadline was close. “Well”,
was the answer, “I have a rather slow computer here.
Probably about two to three minutes.” Having said
this, the author changed several lines in one of the
configuration files and typed make. In two minutes
the machine happily produced an updated report.

This example illustrates a certain point about
computers. They can take over the mind-numbing
drudgery (like replotting dozens of charts) so we can
do interesting things (like analyzing the message be-
hind these charts). Unfortunately, for many people
computers are just glorified typewriters/calculators/
drawing devices, requiring constant hand holding and
manual interventions. These users try to perform all
the boring minute steps themselves, redoing them
when anything changes. However, humans are not
especially good at boring and repetitious work. They
make mistakes. This often leads to embarrassing re-
sults (see, for example, the discussion of spreadsheet
errors in Reinhart and Rogoff’s paper by Herndon,
Ash, and Pollin, 2013). It is much more rewarding
to teach a computer to do such work for you.

In this paper we show how to teach your com-
puter to make high quality plots for your papers
and reports, and to remake them as needed. This
involves a combination of TEX, Gnuplot or Octave,
and Makefiles. The system is highly customizable,
and rather easy to use. Of course, TEX is the heart of
the system, and it was developed with TEX in mind
on each step. Thus we hope it might be of interest
to the TUGboat readership.

Some points should be made before we discuss

this system. First, it was developed “in house”, and
thus reflects certain tastes and idiosyncrasies. Sec-
ond, we started to work on it long time ago — before
such tools as latexmk or Asymptote were available.
Thus it uses only classic tools and has a certain
“retro” computing spirit. Third, it was developed for
a Unix-like environment.1 One can get it working
on Windows using any free implementation of make,
but that is beyond the scope of this paper.

2 Gnuplot graphics

There are many choices for a plotting program suit-
able for a TEX user: PSTricks, PGF/TikZ, META-
FONT, METAPOST, and Asymptote come to mind,
as well as a plethora of non-free solutions. However
for complex graphics, especially three-dimensional
ones, Gnuplot is, in our opinion, among the best
choices. It has the right combination of sound de-
faults (axis labeling, tick marks location, etc.) and
the option of changing any default if needed. A full
discussion of the rich possibilities of this program is
also beyond our scope here. We recommend the ex-
tensive built-in help (try help terminal epslatex,
for example) and the book by Janert (2009).

How can we include the graphics produced by
Gnuplot into a TEX document? The simplest solu-
tion is to make Gnuplot output an EPS or PDF file
and use \includegraphics to put this plot into the
proper place. However, this idea has a number of
flaws. First, the text on the graphics will be done in
Helvetica and Symbol fonts, which may well clash
with your body font. Second, you may want to use
TEX for annotations inside the graphics.

TikZ provides a method for smooth integration
of Gnuplot-produced plots in the \tikzpicture en-
vironment. However, it tends to replot all graphics
whenever you change the TEX file, which might be
time consuming.

Gnuplot has a number of TEX-compatible out-
put formats (“terminals” in Gnuplot terminology).
Probably the best choice for complex graphics is
epslatex (or pstex for plain TEX). These terminals
produce a .tex file that has all the labels, while
the graphics are saved in a PostScript file, which is
automatically called by the .tex file. An example of
the usage of this terminal is shown in Figure 1. Let
us discuss it in detail.

The first line sets the output format:

set terminal epslatex monochrome

The option monochrome is chosen here because the
printer charges TUGboat extra for color pages. In
most cases the color option is preferable. Note: even

1 Including GNU/Linux and MacOSX.

Plots in LATEX: Gnuplot, Octave, make

350 TUGboat, Volume 34 (2013), No. 3

set terminal epslatex monochrome

set output "function-fig.tex"

set pm3d # Colored surface

unset surface # We do not want to plot the mesh lines

set isosamples 100, 100 # Smooth surface

set ztics 0.2 # Increment for z tick marks

set cbtics 0.2 # Increment for colored box

set format ’$%g$’

set xtics offset 0,-.3

set ytics offset 1,0

set ztics offset -1,0

set cbtics offset 1,0

set xrange [-1.5:1.5]

set yrange [-1.5:1.5]

set label 1 \

’$f(\mathbf{x})=\exp\left(-\lvert\mathbf{x}\rvert^2\right)$’ \

at -1.5,-1,1

set label 2 \

’$\displaystyle\max_{\mathbf{x}\in \mathbb{R}^2} f(\mathbf{x})$’ \

at 1,1,1.3

set arrow 1 from 1,1,1.3 to 0,0,1 front

splot exp(-x**2-y**2) title ""

set output

Figure 1: A Gnuplot script function.gp with epslatex output

with the monochrome option, the package color or
xcolor must be called by your main TEX file.

The next line sets the name of the output .tex
file; we chose function-fig.tex. (We explain this
naming convention below.)

The lines set pm3d and unset surface explain
how to plot the three-dimensional graphics: using
color (well, shades of gray for our monochrome dis-
play) to show the height and not plotting the surface
mesh lines.

The line set isosamples sets the number of
points where the function is calculated. We use
100× 100 = 10000 points for a smooth plot.

The lines set ztics and set cbtics set the
increment for the ticks on the z axis and the color box
in the legend. We do not use similar commands for
xtics and ytics since the defaults are good enough.

The line set format ’$%g$’ refers to the for-
mat of the tick marks. It makes the numbers to be
typeset in the math mode. The default is %g, which
should be familiar to those knowing C formatting
commands. Thus normally Gnuplot typesets tick
marks as text, so minus signs become dashes.

The next lines slightly move the tick numbers
for the x, y, and z axes and the color box. (Gnuplot
is not completely aware of the font metrics for TEX
fonts, so its position calculations are sometimes not
good enough for the demanding eyes of TUGboat
editors.)

The lines set xrange and set yrange set the x

and y domains for the plotting: from −1.5 to 1.5. We
do not use a similar set zrange command since the
default (based on the maximal and minimal values
of the function plotted) looks good.

The next lines are label commands. They have
three arguments: label number (1 and 2 in our case),
label text (enclosed within single quotes) and label
position (at statements). The text in the labels is
TEX code interpreted in the context of your main
document. Thus you can put arbitrarily complex
annotations on your graphics. Gnuplot provides
some mechanisms for fine-tuning the label reference
point; in most cases, however, you do not need to
change the default.

We use an arrow from the label to the top of
the plot. It is set by the set arrow command. Its
arguments include arrow number, arrow start and
arrow end. The last keyword, front, means that the
arrow is plotted on the front layer of the picture, i.e.,
is not to be obscured by the plot itself.

The actual plot is done by the penultimate line:

splot exp(-x**2-y**2) title ""

It means: do a surface plot of the function exp(−x2−
y2), with an empty title (by default, Gnuplot typesets
the formula as the title).

The last line, set output, writes the results to
the output files and closes them. See Figure 2.

2.1 Plots from data points

In the above example we plotted a mathematical

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 34 (2013), No. 3 351

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5
−1
−0.5

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1
f(x) = exp

(
−|x|2

)
max
x∈R2

f(x)

0

0.2

0.4

0.6

0.8

1

Figure 2: The plot generated by the script in Figure 1

expression. Gnuplot can also plot data from a file,
obtained from an experiment or other calculations.
As an example we show a script in Figure 3. Here
we plot the stopping distances of cars moving with
different speeds as measured in 1920s. The data is
from the R distribution (R Core Team, 2013). We
put them in a space-separated file cars.dat, which
looks like this:

"speed" "dist"

4 2

4 10

7 4
...

The first line shows the column names. It starts with
the comment symbol # to tell Gnuplot not to try to
plot it.

Most of the commands in Figure 3 are similar
to those in Figure 1. Let us look at the ones that
are different.

The line set logscale xy tells Gnuplot to cre-
ate a log–log plot. The lines set xlab and set ylab

set the labels for x and y axes correspondingly. The
command set label 1 contains a TEX expression
that includes a mathematical formula and rotation
to typeset the formula along the line it describes. All
rotation and typesetting is done by TEX rather than
by Gnuplot.

Since we make a two-dimensional plot rather
than a three-dimensional one, we use the plot com-
mand rather than splot:

plot "cars.dat" with points pt 4 title "", \

exp(-0.73+1.6*log(x)) title ""

This command has two arguments separated
by a comma and corresponding to two objects we
want to plot: a data file, plotted with points of

set terminal epslatex monochrome

set output "cars-fig.tex"

set logscale xy

set xrange [1:100]

set yrange [1:500]

set xlab ’Speed, mph’

set ylab ’Stopping distance, feet’

set format ’$%g$’

set label 1 \

’\rotatebox{41}{$\ln y=-0.73+1.6\ln x$}’ \

at 1.8, 4

plot "cars.dat" with points pt 4 title "", \

exp(-0.73+1.6*log(x)) title ""

set output

Figure 3: Another Gnuplot script, cars.gp

type 4 (these happen to be unfilled squares), and a
mathematical expression corresponding to a straight
line on the log–log scale. The result is shown in
Figure 4.

A good way to debug and tune the graphics is to
comment out the first two lines of the script and run
it through Gnuplot, thus seeing the results online,
changing the script until you get a satisfactory result.

3 Octave graphics

Gnuplot’s built-in features cover most mathematical
needs. However, sometimes they are not enough.
What can we do then? As discussed in the previous
section, we can calculate the data points in an ex-
ternal program and feed the result to Gnuplot as a
(space separated) text file. Another possibility is to
use software that can talk to Gnuplot directly.

A good choice for this is Octave. Octave is a
high level language and program for numerical calcu-
lations. It is similar to and mostly compatible with

Plots in LATEX: Gnuplot, Octave, make

352 TUGboat, Volume 34 (2013), No. 3

1

10

100

1 10 100

S
to

p
p

in
g

d
is

ta
n

ce
,

fe
et

Speed, mph

ln
y

=
−0
.7

3 +
1.

6 ln
x

Figure 4: The plot generated by the cars.gp script in Figure 3

the commercial program MATLAB. As often hap-
pens with free software, some of Octave’s capabilities
surpass those of its commercial sibling. In particular,
the technique of generating TEX-compatible graphics
described in this article does not work in MATLAB.
The latter can produce plots in the EPS format (Oc-
tave can do this too), but text annotations on these
plots are done in its own fonts, which may clash with
the body text.

The current version of Octave uses Gnuplot for
graphics, so most of the features discussed in the
previous section are available in Octave. However,
the syntax is slightly different. The most important
difference is the order of commands. In Gnuplot we
first “set” the annotations: legend, labels, etc., and
then plot the data. In Octave we plot the data first,
and only then add annotations to the existing figure.

In Figures 5 and 6 we show a plot used in one of
our reports. In this report we discussed the behavior
of a certain system. It depended on a dimensionless
parameter ρ. The report showed that this parameter
ought to satisfy the following condition:

ber1 ρ = bei1 ρ

where ber1 and bei1 are so-called Kelvin functions,
related to the Bessel function of complex argument
(Olver, Lozier, Boisvert, and Clark, 2010, § 10.61).
Thus we wanted a plot of the expression

δ(ρ) = ber1 ρ− bei1 ρ

and the point ρ0 for which δ(ρ0) = 0.

Unfortunately, Gnuplot does not know anything
about Kelvin functions. An attempt to calculate
them using Bessel functions of complex argument
leads (at least in version 4.4) to the following truthful,
but not especially helpful message: can only do bessel
functions of reals. To tell the truth, Octave also
knows nothing about Kelvin functions. However,
unlike Gnuplot, it is not afraid of Bessel functions of
complex argument.

In Figure 5 we show an Octave script kelvin.m
that generates the required plot. Let us discuss the
script in detail.

The first three lines define functions ber1, bei1
and δ using Octave’s built-in besselj command.
The next line, rho0 = fsolve(delta, 4) calculates
the root of equation δ(x) = 0 starting from the point
x = 4, and assigns the result to the variable rho0.
By the way, this root is ρ0 = 3.7727.

The reason for the next command is the way
Octave executes plot commands. In Gnuplot we
first set up the “terminal”, and only then draw the
plot. Thus, at the time of plotting our computer
already knows we want to save the result to a file
and does not make on-screen plots. In Octave we
first draw the plot on the screen and only then “save”
the result. This slows down the execution. The
command figure(’visible’, ’off’) switches off
this on-screen drawing.

The next few lines perform the actual plotting.
Octave has two ways to make a plot of a function.
One is the fplot command: fplot(delta, [0,4])

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 34 (2013), No. 3 353

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

b
er

1
ρ
−

b
ei

1
ρ

ρ

ρ0

3.77

Figure 6: The plot generated by the kelvin.m script in Figure 5

ber1 = @(x) -real(besselj(1,x*exp(pi*1i/4)));

bei1 = @(x) imag(besselj(1,x*exp(1i*pi/4)));

delta = @(x) ber1(x)-bei1(x);

rho0 = fsolve(delta,4);

figure(’visible’,’off’);

x = 0:0.1:4;

plot(x, delta(x), ’linewidth’, 2);

hold on;

plot([rho0], [0], ’o’, ’linewidth’, 10);

text(rho0, 0.15, \

’\colorbox{white}{ρ_0}’, \

’horizontalalignment’, ’center’);

text(rho0, -0.15, \

sprintf("\\colorbox{white}{$%.2f$}", rho0), \

’horizontalalignment’, ’center’);

title("");

legend("off");

grid();

xlabel(’ρ’);

ylabel(’$\ber_1\rho-\bei_1\rho$’);

print -depslatex -mono "-S800,600" \

"kelvin-fig.tex"

Figure 5: An Octave script, kelvin.m

would make the graph shown in Figure 6. Unfortu-
nately, in the current version of Octave the command
fplot has rather limited options for fine control of
the plot; in particular, it does not allow to change
the default line width. The default lines look weak
in our monochrome version. So here we use the
generic plot command instead of fplot. We gen-

erate an array of abscissas with the command x =

0:0.1:4, and then plot delta(x) versus x. The com-
mand plot(x, delta(x), ’linewidth’, 2) gen-
erates the plot with a line width of 2, meaning twice
the default width.

Normally a plot or fplot command erases pre-
vious graphics and starts afresh. The line hold on

preserves the graphic and combines it with the next
plot. This next plot consists of only one point, a large
dot at the zero of the function δ(x): plot([rho0],

[0], ’o’, ’linewidth’, 10); The parameter ’o’
sets the shape of the marker, while setting the line
width to 10 makes it large.

The next two commands, using text(...), are
similar to Gnuplot label commands. We set up the
coordinates of the text and the text itself. Additional
parameters help to tune the output.

The first command places the “text” string
\colorbox{white}{ρ_0} at the point (ρ0, 0.15),
i.e. above the root of our equation. The text is cen-
tered on the reference point (the other options for
horizontalalignment are left and right). This
“text” is a LATEX command that creates the symbol ρ0
inside a rectangle with white background (colorbox).
We use this rectangle because otherwise the plot over-
laps the symbol.

The second command is more complicated. Here
the “text” is dynamically constructed by Octave it-
self. The function sprintf is similar to the function

Plots in LATEX: Gnuplot, Octave, make

354 TUGboat, Volume 34 (2013), No. 3

of the same name in C, awk, perl, and many other lan-
guages. Its first argument is the “format”, and the re-
maining arguments are interpreted according to this
format. In our case we output a string which includes
rho0 typeset with two decimal figures per the specifi-
cation %.2f in the format. The function returns the
string2 \colorbox{white}{3.77}, which is type-
set centered at the point (ρ0,−0.15), i.e. under the
root of the equation. We again use \colorbox to
create the white background for the label.

The next commands are analogous to those in
Gnuplot: we switch off the main title and legend,
switch on the grid and set up the axes labels. Since
\ber and \bei are not standard LATEX operators,
our .tex file has the following definitions based on
the macro \DeclareMathOperator provided by the
amsmath package:

\DeclareMathOperator{\ber}{ber}

\DeclareMathOperator{\bei}{bei}

The last line,

print -depslatex -mono "-S800,600" \

"kelvin-fig.tex"

saves the graphs into the file kelvin-fig.m. It uses
epslatex format (similar to Gnuplot’s epslatex

terminal), and mono-chrome rendering. The magic
string "-S800,600" sets the size of the figure in
points (the reason why it must be in quotes is better
known to the authors of Octave).

Like Gnuplot, Octave can create complex three-
dimensional graphics, which we leave as an exercise
to the reader.

Unfortunately, we failed to find the analog of
the Gnuplot set format command, so tick marks
on Figure 6 are typeset in text mode: compare ‘-1’
(wrong!) and ‘−1’ (right). This problem can be
corrected by a simple sed script acting on the file
kelvin-fig.m, which we leave as another exercise
to the reader.

4 Insertion of graphics in the .tex file

The methods described in the previous sections pro-
duce two files for each graphics: a .tex file with the
textual material, and a PostScript file (either .eps

or .ps) with the graphics material. For example, in
the directory with this paper are the following files:

cars-fig.eps cars-fig.tex

function-fig.eps function-fig.tex

kelvin-fig.eps kelvin-fig.tex

To use these graphics in the text, we “read in”
the .tex file using the command \input, for example,
\input{function-fig}. The associated PostScript

2 Exercise: why does the format use double backslash?

file is automatically inserted by the .tex file with
the corresponding \includegraphics command.

This works fine with the traditional latex with
dvips route. What happens if you use pdflatex?
Fortunately, recent distributions are smart enough
to automatically convert .eps files to .pdf (using
epstopdf), so after a run of pdflatex you can find
in the working directory the files

cars-fig-eps-converted-to.pdf

function-fig-eps-converted-to.pdf

kelvin-fig-eps-converted-to.pdf

This conversion is done transparently to the user.3

Of course, the PostScript files must have a correct
bounding box for correct results.

5 Putting everything together: Makefiles

The process described in the previous sections may
seem rather complex. We run Gnuplot and/or Oc-
tave, latex, dvips, ps2pdf, pdflatex, . . . If we
change some of the files, we need to rerun the neces-
sary portions of the process. A human should not do
this manually (and probably cannot do it without
introducing errors).

The famous utility make can do this for you.
Let us recall the basics. The utility reads a

Makefile which sets up rules and dependencies. Rules
tell it how to “make” a certain file: you run latex on
a .tex file to generate a .dvi file, you run dvips on
a .dvi file to generate a .ps file, etc. Dependencies
record that a file A depends on the file B: whenever B
is changed, A must be regenerated. You can find
more information, for example, in the classic book
by Mecklenburg (2004).

In this section we set up a typical Makefile for
TEX and Gnuplot or Octave.

Let us start with Gnuplot. We will use the ex-
tension .gp for our Gnuplot scripts and the following
naming convention: a file file.gp generates the files
file-fig.tex and file-fig.eps. The part -fig is
used to set up the clean task: to clean the directory
we delete all generated files.

So, we can define the following simple rule: each
file-fig.tex file depends on the file.gp, and
gnuplot is used to generate it:

%-fig.tex: %.gp

gnuplot $<

Here, according to Makefile syntax, % is a “wildcard”,
and $< means the “prerequisite” (the .gp file).

Here is a similar rule for Octave-generated files:

%-fig.tex: %.m

octave $<

3 Unfortunately, Gnuplot’s pstex terminal for plain TEX
uses PostScript specials instead of \includegraphics. This
makes the technique described here inapplicable.

Boris Veytsman and Leyla Akhmadeeva

TUGboat, Volume 34 (2013), No. 3 355

So now we have two rules for generation of 〈file〉
-fig.tex files: either from Gnuplot or from Octave.
Happily, make is smart enough to choose the right
one: if it finds an appropriate file ending in .gp, it
uses the first rule, and if it finds an appropriate file
ending in .m, it uses the second.4

Let us now discuss the generation of PDF files
from .tex sources. In this article we discuss the
pdflatex route; the rules for the “traditional” latex

→ dvips route are left as another exercise.
The basic idea is relatively simple: run pdflatex

until the labels converge. The code below has an
additional quirk of running bibtex several times
because citations may use crossref fields:

%.pdf: %.tex

pdflatex $*

- bibtex $*

pdflatex $*

- while (grep -q \

’^LaTeX Warning: Label(s) may have changed’ \

$*.log) do (bibtex $*; pdflatex $*;) done

Of course, this is not the full story. We need
to tell make that whenever a plot is changed, all
PDF files must be regenerated. This can be done by
adding to the Makefile lines like

document.pdf: plot-fig.tex

for each \input{plot-fig} line.
This line tells make to regenerate the main PDF

(using the rule above) when plot-fig.tex changes;
the companion plot-fig.eps could be added as an-
other dependency, but since the two plot-fig.* files
are always created simultaneously, it’s not necessary.

What about the conversion .eps→.pdf? Will
that be done as well? The answer is yes. TEX uses
a simple but sufficient algorithm for this conversion:
whenever .eps file is newer than the generated .pdf

file, the latter is regenerated. Thus, after you change
plot.gp, one line in the Makefile triggers a number
of events:

1. The program make finds the new plot.gp and
calls Gnuplot to regenerate plot-fig.tex.

2. As a side effect the file plot-fig.eps is recre-
ated by Gnuplot.

3. TEX finds the new plot-fig.eps and generates
a new plot-fig-eps-converted-to.pdf.

4. The new version of the main PDF file is created.

If you have many plots, you might find it cum-
bersome to add a dependency for each. Fortunately,
Makefiles can include subfiles, allowing us to auto-
matically generate the dependencies. Each line will

4 If both Gnuplot and Octave files are present, make

chooses the rule that appears first in the Makefile.

#!/usr/bin/env perl

Extract information from input statements

in TeX files. Usage:

makefigdepend FILE FILE FILE ... > depend

foreach my $file (@ARGV) {

open (FILE, $file) || die "open($file): $!";

$file =~ s/\.tex$/.pdf/;

while (<FILE>) {

while (/\\input(?:\[[^\]]+\])*\{([^\}]+)\}/g) {

print "$file: $1.tex\n";

}

}

close FILE;

}

exit 0;

Figure 7: A Perl script for generation of dependencies

have the form A: B, showing that file A depends on
file B. The way to do this is the following:

1. Add to the Makefile the line -include depend,
which instructs make to read the file depend if
it exists. The dash at the beginning tells make

not to worry if this file is not found (e.g. at the
start of the run).

2. Add to the Makefile the rules to generate the
file depend from the sources.

For the second task we need to write a program to
generate the dependency file. A simple Perl script
makefigdepend.pl to do this is shown in Figure 7.
(The choice of Perl makes our solution less “retro”
than it could be: sed and awk could do the job.)
Then the rule

depend: ${TEXFILES}

perl makefigdepend.pl \

${TEXFILES} >depend

generates the required file. For example, the file
depend for this article is the following:5

gnuplotmk.pdf: function-fig.tex

gnuplotmk.pdf: cars-fig.tex

gnuplotmk.pdf: kelvin-fig.tex

gnuplotmk.pdf: function-fig.tex

When we plot a data file, we want make to redo
the plot not only when the .gp file is new, but also
if the original data change. To this end, we add a
line to the Makefile:

cars-fig.tex: cars.dat

An astute reader can see that we wrote this depen-
dency manually. It is of course possible to write a

5 An exercise: why is an identical line about
function-fig.tex repeated in the generated file?

Plots in LATEX: Gnuplot, Octave, make

356 TUGboat, Volume 34 (2013), No. 3

TEXFILES = gnuplotmk.tex

PDFS = ${TEXFILES:%.tex=%.pdf}

all: ${PDFS}

%.pdf: %.tex

pdflatex $*

- bibtex $*

pdflatex $*

- while (grep -q \

’^LaTeX Warning: Label(s) may have changed’ \

$*.log) \

do (bibtex $*; pdflatex $*;) done

%-fig.tex: %.gp

gnuplot $<

%-fig.tex: %.m

octave $<

cars-fig.tex: cars.dat

clean:

$(RM) *.aux *.bbl *.dvi *.log \

*.out *.toc *.blg *.lof *.lot \

*.eps *-fig* depend

distclean: clean

$(RM) ${PDFS}

depend: ${TEXFILES}

perl makefigdepend.pl \

${TEXFILES} > depend

-include depend

Figure 8: Makefile for this paper

script to parse the Gnuplot files and put such lines
in the file depend. Again, this is left as an exercise.

If the data files themselves are generated by
another program, as would be typical, we can tell
make to run this program if necessary by adding
the dependencies of data files upon the necessary
input parameters. This leads to incredibly smart
behavior: as soon as any of the configuration or data
files change, make regenerates all pieces that could
be influenced by this change.

The last task is cleaning. A common convention
is to provide two targets: clean removes all gener-
ated files except the principal (PDF) output, while
distclean or veryclean deletes everything but the
original sources:

clean:

$(RM) *.aux *.bbl *.dvi *.log \

*.out *.toc *.blg *.lof *.lot \

*.eps *-pics.* *-fig* depend

distclean: clean

$(RM) ${PDFS}

In Figure 8 we show the Makefile for this paper.

Acknowledgements

We are grateful to Marcel Richter who urged us to put
together the notes in a readable form, and to Michael
Kotelyanskii who made many useful comments about
the manuscript.

References

Herndon, Thomas, M. Ash, and R. Pollin.
“Does High Public Debt Consistently Stifle
Economic Growth? A Critique of Reinhart
and Rogoff”. Working Paper 322, University
of Massachusetts, Amherst. Political Economy
Research Institute, 2013. http://www.peri.
umass.edu/fileadmin/pdf/working_papers/

working_papers_301-350/WP322.pdf.

Janert, Philipp K. Gnuplot in Action.
Understanding Data with Graphs. Manning
Publications Co., 2009.

Mecklenburg, Robert. Managing Projects with
GNU Make. O’Reilly Media Inc., Sebastopol,
CA, third edition, 2004. Available at
http://oreilly.com/catalog/make3/book/

index.csp.

Olver, F. W. J., D. W. Lozier, R. F. Boisvert,
and C. W. Clark, editors. NIST Handbook of
Mathematical Functions. Cambridge University
Press, New York, NY, 2010.

R Core Team. R: A Language and Environment
for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2013.
ISBN 3-900051-07-0.

� Boris Veytsman
School of Systems Biology &

Computational Materials
Science Center, MS 6A2

George Mason University
Fairfax, VA 22030
borisv (at) lk dot net

� Leyla Akhmadeeva
Bashkir State Medical University
3 Lenina Str., Ufa, 450000, Russia
la (at) ufaneuro dot org

http://www.ufaneuro.org

Boris Veytsman and Leyla Akhmadeeva

