
80 TUGboat, Volume 31 (2010), No. 1

Beyond \newcommand with xparse
Joseph Wright

1 Introduction
The LATEX2ε \newcommand macro is most LATEX
users’ first choice for creating macros. As well as the
‘sanity checks’ it carries out, the ability to define mac-
ros with an optional argument is very useful. How-
ever, to go beyond using a single optional argument,
or to create more complex input syntaxes, LATEX2ε
users have to do things ‘by hand’ using \def or load
one of the packages which extend \newcommand (for
example twoopt (Oberdiek, 2008)).

As part of the wider efforts to develop LATEX3,
the xparse package (LATEX3 Project, 2009) aims to
replace \newcommand with a much more flexible set
of tools. This means looking again at the way that
commands are defined, and so xparse uses different
syntax conventions to \newcommand. In this article,
I will be looking at some of the highlights of xparse.

2 Creating document commands
LATEX2ε provides not only \newcommand, but also
\renewcommand and \providecommand, all sharing
a common syntax. xparse also provides a family of
related commands following the same pattern:

• \NewDocumentCommand For defining a macro not
already defined, giving an error message if it is.

• \RenewDocumentCommand For changing a defini-
tion, issuing an error message if the macro does
not already exist.

• \ProvideDocumentCommand Creates a macro if
it does not exist, and otherwise does nothing:
i.e., will not change an existing definition.

• \DeclareDocumentCommand Does no checks for
an existing definition: simply defines the macro
using the expansion given.

As \DeclareDocumentCommand always creates an up-
dated definition, it is most convenient for the ex-
amples in the rest of this article.

The \DeclareDocumentCommand function takes
three mandatory arguments:
1. The name of the function to define;
2. An ‘argument specification’;
3. The code which the function expands to.

\DeclareDocumentCommand \foo { m } {%
% Code here

}

The first and third arguments are essentially the
same as the equivalents for \newcommand: it is the
argument specification that marks out an xparse defin-

ition. As you might guess from the above example,
it is enclosed in braces, and spaces are ignored.

3 Argument specifications
The basic idea of an argument specification (‘arg
spec’) is that each argument is listed as a single letter.
This means that the number of letters tells you how
many arguments a function takes, while the letters
themselves determine the type of argument. As the
argument specification is a mandatory argument, a
function with no arguments still needs an arg spec.
\DeclareDocumentCommand \foo { } {%
% Code with no arguments

}
xparse provides a range of argument specifier

letters, some of which are somewhat specialised. The
following is therefore only covers the most generally
useful variants in detail.

Mandatory arguments are created using the let-
ter m. So
\DeclareDocumentCommand \foo { m m } {%
% Code with 2 arguments

}
is nearly equivalent to
\newcommand*\foo[2]{%
% Code with 2 arguments

}
The ‘nearly’ is an important point: in contrast to
\newcommand, xparse functions are not \long by de-
fault. In xparse, we can decide for each argument
whether to allow paragraph tokens or not. This is
done by preceding the arg spec letter by +:
\DeclareDocumentCommand \foo { m +m } {%
% #1 No \par tokens allowed
% #2 \par tokens permitted

}
\DeclareDocumentCommand \foo { +m +m } {%
% Both arguments allow \par

}
LATEX optional arguments with no default value

are given the letter o, while those with a default
value are given the letter O. The latter also requires
the default itself, of course!
\DeclareDocumentCommand \foo { o m } {%
% First argument optional, no default
% Second argument mandatory

}
\DeclareDocumentCommand \foo
{ O{bar} m } {%
% First argument optional, default "bar"
% Second argument mandatory

}

Joseph Wright

TUGboat, Volume 31 (2010), No. 1 81

The use of two separate letters here illustrates an-
other LATEX3 concept: functions used for setting up a
document should have a fixed number of mandatory
arguments. So while o is given with no additional
information, O must always be given along with the
default (as shown).

Thus far, the xparse method does not go signi-
ficantly beyond what is possible using \newcommand.
However, as well as recognising more types of argu-
ment, xparse also allows free mixing of optional and
mandatory arguments. For example, it is easy to
create a function with two optional and two long
mandatory arguments in one step.
\DeclareDocumentCommand \foo
{ o +m o +m } {%
% Four args, #1, #2, #3 and #4
% Only #2 and #4 can include \par tokens

}
Creating this type of behaviour is far from trivial
without xparse.

Generalising the idea of a LATEX2ε optional ar-
gument, which is always enclosed in square brackets,
xparse can create optional arguments delimited by
any pair of tokens. This is done using the letters
d (no default value) and D (with default value): ‘d’
stands for ‘delimited’. So we can easily add an argu-
ment in parentheses or angle brackets, for example.
\DeclareDocumentCommand \foo
{ d() D<>{text} m } {%
% Optional #1 inside (...)
% Optional #2 inside < ... >
% with default "text"
% Mandatory #3

}
A standard LATEX2ε method to indicate a spe-

cial variant of a macro is to add a star to its name.
xparse uses the letter s to indicate this type of argu-
ment. There is then a need to indicate if a star has
been seen. This done by returned one of two special
values (\BooleanTrue or \BooleanFalse), which
can be checked using the function \IfBooleanTF:
\DeclareDocumentCommand \foo { s m } {%
\IfBooleanTF #1 {%
% Starred stuff using #2

}{%
% Non-starred stuff using #2

}%
}
A generalised version of the s specifier, with the letter
t for ‘token’. This works in exactly the same way,
but for an arbitrary token, which is given following
the ‘t’.
\DeclareDocumentCommand \foo { t/ m } {%

\IfBooleanTF #1 {%
% Code if a slash was seen

}{%
% Code if no slash was seen

}%
}

Of the more specialised specifier letters, per-
haps the most interesting is u, to read ‘up to’ some
specified value.
\DeclareDocumentCommand \foo
{ u{stop} } {%
% Code here

}
\foo text stop here

Here, the code will parse ‘text␣’ as #1. Following
standard TEX behaviour, the space between ‘text’
and ‘stop’ will be picked up as part of the argument.

4 Optional arguments
\newcommand does not differentiate between an op-
tional argument which has not been given and one
which is empty:
\newcommand\foo[2][]{%
% Code

}
\foo{bar}
\foo[]{bar}

In both cases, #1 is empty: not entirely helpful. It is
possible to get around this using a suitable default
value, but xparse aims to solve this problem in a
general fashion.

When no default is available for an optional argu-
ment, xparse will return the special marker \NoValue
if the argument is not given. It is then possible to
check for this marker using the \IfNoValue test:
\DeclareDocumentCommand \foo { o m } {%
\IfNoValueTF{#1}{%
% Stuff just with #2

}{%
% Stuff with #1 and #2

}%
}

Following the standard LATEX3 approach, this test
is available with versions which only have a true or
false branch:
\DeclareDocumentCommand \foo { o m } {%
\IfNoValueF{#1}{%
% Stuff with #1

}%
% Stuff with #2

}

Beyond \newcommand with xparse

82 TUGboat, Volume 31 (2010), No. 1

5 Robustness
xparse creates functions which are naturally ‘robust’.
This means that they can be used in section names
and so on without needing to be protected using
\protect. This makes using functions created using
xparse much more reliable than using those created
using \newcommand, particularly when there are op-
tional arguments.

xparse is also designed so that optional argu-
ments can themselves contain optional material. For
example, if you try
\newcommand*\foo[2][]{%
% Code

}
\foo[\baz[arg1]{arg2}]{arg3}

you will find that \foo will pick up ‘\baz[arg1’ as
#1 and ‘arg2’ as #2: not what is intended. However,
the same code with xparse
\DeclareDocumentCommand \foo { o m } {%
% Code

}
\foo[\baz[arg1]{arg2}]{arg3}

will parse ‘\baz[arg1]{}’ as #1 and ‘arg’ as #2, as
anticipated.

6 Fully expandable commands
There are a small number of circumstances under
which fully expandable detection of optional argu-
ments is desirable. For example, the etextools pack-
age (Chervet, 2009) provides a number of utility
macros to produce this type of macro.

Rather than require the learning of an entirely
new method for creating purely expandable com-
mands, xparse can generate them in an analogous
manner to normal (robust) commands.
\DeclareExpandableDocumentCommand \foo
{ o m } {%
% Expandable code

}

This process has some limitations, some of which
can be detected by xparse at definition time. It is
therefore intended for exceptional use when a robust
command will not behave suitably.

7 Environments
In analogy to the relationship between \newcommand
and \newenvironment, xparse provides the function
\DeclareDocumentEnvironment (and variants) for
creating environments. The same argument spe-
cifications are used for declaring the arguments to
\begin{...}. The crucial difference to standard
LATEX2ε environments is that the arguments are
also available in the \end{...} code.
\DeclareDocumentEnvironment {foo} { o m } {%
% Begin code using #1 and #2

}{%
% End code using #1 and #2

}

8 Conclusions
By providing a single interface for defining both
simple and complex user functions, xparse frees us
from needing to worry about the detail of parsing
input. Almost all cases can be covered without the
need to use low level methods to process input.

Final note: you can use xparse in LATEX2ε. Just:
\usepackage{xparse}

References
Chervet, Florian. “The etextools package: An

ε-TEX package providing useful (purely
expandable) tools for LATEX users and
package writers”. Available from CTAN,
macros/latex/contrib/etextools, 2009.

LATEX3 Project. “The xparse package: Generic
document command processor”. Available from
CTAN, macros/latex/contrib/xpackages/
xparse, 2009.

Oberdiek, Heiko. “The twoopt package”. Part of
the oberdiek bundle, available from CTAN,
macros/latex/contrib/oberdiek, 2008.

� Joseph Wright
Morning Star
2, Dowthorpe End
Earls Barton
Northampton NN6 0NH
United Kingdom
joseph dot wright (at)

morningstar2 dot co dot uk

Joseph Wright

macros/latex/contrib/etextools
macros/latex/contrib/xpackages/xparse
macros/latex/contrib/xpackages/xparse
macros/latex/contrib/oberdiek

	Introduction
	Creating document commands
	Argument specifications
	Optional arguments
	Robustness
	Fully expandable commands
	Environments
	Conclusions

