
Programming PostScript Type 1 Fonts Using METATYPE1:

Auditing, Enhancing, Creating

Bogusław Jackowski
ul. Tatrzańska 6 m. 1, 80-331 Gdańsk, Poland
B_Jackowski@gust.org.pl

Janusz M. Nowacki
ul. Śniadeckich 82 m. 46, 86-300 Grudziądz, Poland
J.Nowacki@gust.org.pl

Piotr Strzelczyk
ul. Subisława 14, 80-354 Gdańsk, Poland
P.Strzelczyk@gust.org.pl

Abstract

METATYPE1 is a METAPOST-based package for producing outline PostScript fonts in the
Type 1 format. Since its first unofficial release a few years ago, it has been applied to several tasks.
We would like to share our experience with other fans of computer typography.

Résumé

METATYPE1 est un ensemble d’outils basé sur METAPOST pour produire des fontes PostScript
de type 1. Depuis sa première sortie, il y a quelques années, il a eu un grand nombre d’applications.
Nous souhaitons partager notre expérience avec d’autres amateurs de typographie informatique.

Introduction

We started the work on METATYPE1 some five years
ago. Outline fonts had already been in vogue then, espe-
cially in electronic publishing. Being adherents of both
computer typography and programming, we urgently
needed a programming tool for generating outline fonts.
Fortunately, neither TEXtrace [7] nor FontForge [9] ex-
isted at that time. We highly esteem both of these tools
and therefore we would perhaps have given up—which
would be a pity, because they do not comprise all possi-
ble application areas. Sometimes, full programmability
is preferable. Anyway, we had no choice but to develop
a home-grown engine.

In this paper, we describe a few sample tasks that we
had the opportunity to accomplish using METATYPE1,
thus demonstrating the pros and cons of the programming
approach to generating of outline fonts.

A brief overview of METATYPE1

As the name (and logo) suggests, METAPOST is the ker-
nel of METATYPE1. In other words, METATYPE1

sources are written in theMETAPOST language. META-
TYPE1 provides a task-oriented library of METAPOST

macros. It also makes use of popular open source tools:

F. 1: A simplified scheme of the METATYPE1

engine (comments in the text).

Gawk and T1Utils. The METAPOST output is pro-
cessed byGawk and then assembled byT1Utils (figure 1,
left). The details of the process of generating of fonts us-
ing METATYPE1 can be found in [4].

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 575



Bogusław Jackowski, Janusz M. Nowacki and Piotr Strzelczyk

An important part of the METATYPE1 package is a
(freestanding) converter from the PostScript Type 1 for-
mat to METATYPE1 source, pf2mt1 (figure 1, right),
which also makes use of Gawk and T1Utils. As we shall
see, it proves useful for auditing of fonts.

The installation of the METATYPE1 package is
straightforward, once Gawk, T1Utils, and METAPOST

have already been installed— the files should be copied
to a chosen directory and a system variable METATYPE1
should point to this directory. Originally, METATYPE1

was developed under DOS; its provisional Linux port is
maintained by Włodek Bzyl (see [4] for the url). A sim-
plified version of the Linux scripts is available from the
authors; the scripts will be included in the next release
of METATYPE1.

Many roads to the creation of fonts

Since we are no font designers whatsoever, we will as-
sume that the design of a typeface is given. Still, the
source of a font may be given in various forms— from
lead prints to tentatively ready digital form. In the for-
mer case, one has to create a digitized version from
scratch; in the latter, an audit of a font may prove suf-
ficient. Below, we discuss a few different approaches to
coping with fonts, starting from the simplest one, that is,
from auditing.

Audit A useful yet a very simple tool for auditing of a
font is the already mentioned converter from PostScript
Type 1 format to human readable (and thus machine
readable) METATYPE1 sources. We assume, of course,
that the disassembling of a given font is legal.

Faulty hinting is perhaps most typical in freely avail-
able fonts. Even such diligently prepared fonts as the
Computer Modern family in the PostScript Type 1 for-
mat, released as a freely available product by the Ameri-
can Mathematical Society in 1997, contain questionable
hints.

Prior to the presentation of an example, let us
briefly sketch the idea of the PostScript Type 1 hinting.
Hints are special instructions, allowed only in a font pro-
gram, providing additional information useful during the
process of rendering of a glyph. There are two kinds of
hints: vertical and horizontal; both convey information
concerning the preferred width and position of a stem
(which, in general, may have a varying width).

Consider now, as an example, the font cmsy10

from the AMS Computer Modern family. The converter
pf2mt1 produces METATYPE1 sources, and, which is
important here, a log file; here is an excerpt from the log
(the first number denotes the position of a stem, the sec-
ond one—width):

...

intersectionsq: semi-matching hstem; 558, 45

intersectionsq: non-matching vstem; 55, 40

intersectionsq: semi-matching vstem; 571, 34

The log indicates that there is something wrong
with hints: why should such a regular character as inter-
sectionsq have hints of different width (see figure 2)?

F. 2: Character intersectionsq from cmsy10 from
the collection provided by the AMS; gray rectangles
mark the placement of hints— it can be seen that
they do not precisely coincide with the respective
stems.

The inspection of the code of the glyph intersec-
tionsq reveals, as one would expect, that each stem has the
same width (equal to 40; compare the following pairs of
nodes: z0 4 and z0 6, z0 9 and z0 11, z0 8 and z0 1):
beginglyph(_intersectionsq);

save p; path p[];

z0 0=(605,565); z0 0a=(605,594); z0 1b=(601,598);

z0 1=(572,598);

z0 2=(94,598); z0 2a=(65,598); z0 3b=(61,594);

z0 3=(61,565);

z0 4=(61,34); z0 4a=(61,20); z0 5b=(61,0);

z0 5=(81,0); z0 5a=(101,0); z0 6b=(101,19);

z0 6=(101,33);

z0 7=(101,558);

z0 8=(565,558);

z0 9=(565,34); z0 9a=(565,20); z0 10b=(565,0);

z0 10=(585,0); z0 10a=(605,0); z0 11b=(605,19);

z0 11=(605,33);

p0=compose_path.z0(11);

correct_path_directions(p0)(p);

if turningnumber p0>0: Fill else: unFill fi \\ p0;

set_hstem (558,603); % stem width = 603 - 558

set_vstem (55,95); % stem width = 95 - 55

set_vstem (571,605); % stem width = 605 - 571

ghost_stem bot;

standard_exact_hsbw("intersectionsq");

576 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



Programming PostScript Type 1 Fonts Using METATYPE1: Auditing, Enhancing, Creating

endglyph;

Note that the program is fairly legible and that even
a superficial knowledge of the METAPOST notation suf-
fices to guess what is wrong (here: with hints).

Among others, we tested our pf2mt1 converter
against a rich collection of fonts provided by Vladimir
Volovich, namely, CM-Super [10]. The collection was
prepared using TEXtrace [7] and tuned manually. The
job Volovich did is really impressive. Still, a conver-
sion toMETATYPE1 sources revealed a couple of defects
in nearly every font. It is not the proper place to ana-
lyse minutely the results of the conversion, we therefore
confine ourselves to only one aspect: strange tiny paths
(“scraps”) that we spotted in about 25% of the fonts, on
average in two characters per font. Two examples of such
paths are depicted in figure 3. Note that the “scraps” are
moderately harmful and that their (rare) occurrences can
be expected only in autotraced fonts.

F. 3: Two examples of strange “scraps” (coloured
gray in the magnified details) occurring in CM-Super
fonts: character y from sfbx0900 (top) and
character four from sfsi1095 (bottom).

Finding these weird paths was straightforward: we
simply wrote a short Awk script that looked for tiny 3-
node paths in METATYPE1 sources. For example, the
relevant path in the glyph y from sfbx0900 looked as
follows:

z1 0=(98,-149);

z1 1=(98,-148);

z1 2=(109,-153);

p1=compose_path.z1(2);

Again, a superficial knowledge of the METAPOST

notation suffices— even not knowing in detail how the
operator compose_path works—one can easily detect
such questionable objects. Note that in the case of the
glyph four from sfsi1095, it would be nearly impossi-
ble to notice the superfluous path in the screen or even
in a printed proof, while in the METATYPE1 source it
is easy.

Let us emphasize that we point out the flaws of the
CM-Super family not to deprecate it; we simply want to
turn the reader’s attention to the fact that METATYPE1,
or its parts, can be used as an aid for different font cre-
ation software.

One can conceive of more advanced techniques of
auditing, for example, using task-oriented METAPOST

macros written specially to deal with a given case. But
evenwithout employing advanced techniques, many clues
can be surmised from the report written during the con-
version and from the inspection of the resulting META-
TYPE1 code.

Elementary enhancement An interesting lesson can be de-
rived from the previous section: some improvements of a
font are straighforward. For example, the elimination of
the tiny “scraps” is just trivial. The correction of hint-
ing in the program for the glyph intersectionsq from the
font cmsy10 is also not difficult. The proper code should
read:

set_hstem (558,698);

set_vstem (61,101);

set_vstem (565,605);

or, equivalently (and more advisably):

set_hstem (y0 8,y0 1);

set_vstem (x0 4,x0 6);

set_vstem (x0 9,x0 11);

Thus, even a moderately experienced user should
be reasonably able to modify METATYPE1 sources and
to generate improved fonts in certain simple cases.

Another method of enhancing a font, even simpler
than that of requiring the conversion to METATYPE1

sources and the examination of the results, is to use a
compressing module from the METATYPE1 package.
This module (actually, a short Awk script) performs an
analysis of a disassembled PostScript Type 1 font (a PFB
file), defines subroutines for repeating fragments of the
code, and replaces the occurrences of these fragments by
the respective subroutine calls. The method employed
is based on an algorithm for finding the longest repeating
substring of a given string. The “subroutinization” is one

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 577



Bogusław Jackowski, Janusz M. Nowacki and Piotr Strzelczyk

of a few steps of the whole process of the generation of a
font, but it can be easily disentangled.

Usually, the compression is not astoundingly effi-
cient, for example, the fonts from the AMS Computer
Modern family can be compressed only by 2–3%. The
size of the CM-Super family of fonts, however, can be re-
duced by about 12% (7 MB) with this method. It is not
much, but, on the other hand, it is not nothing.

Advanced enhancement The potential improvements dis-
cussed so far require only basic knowledge of both typog-
raphy and METAPOST programming. Therefore, it is
not a surprise that the likely results are only moderately
significant— in order to achieve more, one has to know
more. It is not extremely difficult, however, to obtain re-
ally useful results knowing just a little more than the rudi-
ments.

In typical cases, an augmentation of a character set
with accented characters is needed. This is a task that can
be accomplished relatively easily using METATYPE1;
namely, there is an operation use_accent, defined in
the set of basic METATYPE1 macros, for precisely this
purpose.

We have used this technique while preparing the
collection of Latin Modern fonts [2]. Our starting point
was, obviously, the AMSComputerModern family of fonts
converted to METATYPE1 format. We programmed
most of the accented characters by adding just three lines
of code per glyph, for example:

beginglyph(_aacute);

use_accent(_a,_acute);

endglyph;

beginglyph(_abreve);

use_accent(_a,_breve);

endglyph;

beginglyph(_acircumflex);

use_accent(_a,_circumflex);

endglyph;

etc.; altogether, almost 200 characters of the LatinMod-
ern family have been “programmed” using such three-
liners.

In some cases, however, additional settings were
needed. By default, the use_accent operator works
similarly to the TEX \accent primitive— it just cen-
tres an accent over an accented character. This procedure
is not adequate for such characters as Lacute. META-
TYPE1, unlike TEX, provides an optional (numeric) pa-
rameter for each character, glyph_axis, describing the
position of the glyph axis to be used with accents. The
axis is aligned either with the centre of an accent or with
its axis, if it happens to be set.

For example, the program for the letter L from the
font lmb10 assigns the value of the x-coordinate of the

central node of the top serif to the variable glyph_axis
(see figure 4):

beginglyph(_L);

save p; path p[];

glyph_axis=x0 7; % manually added line

z0 0=(643,274);

z0 1=(596,274); z0 1a=(588,205); z0 2b=(571,47);

z0 2=(392,47);

z0 3=(289,47);

z0 4=(289,639);

z0 5=(424,639);

z0 6=(424,686); z0 6a=(380,683); z0 7b=(271,683);

z0 7=(222,683); z0 7a=(178,683); z0 8b=(77,683);

z0 8=(39,686);

z0 9=(39,639);

z0 10=(147,639);

z0 11=(147,47);

z0 12=(39,47);

z0 13=(39,0);

z0 14=(612,0);

p0=compose_path.z0(14);

if turningnumber p0>0: Fill else: unFill fi \\ p0;

set_hstem (0,47);

set_hstem (639,686);

set_vstem (596,643);

set_vstem (147,289);

standard_hsbw("L");

endglyph;

F. 4: An example of the setting of a glyph axis
in a character L from a Latin Modern font (lmb10);
such an axis facilitates the placement of accents in
asymmetric characters such as Lacute.

Having adequately defined the axis for a given char-
acter (and for relevant accents, if needed), the accented
characters can be defined using our neat three-liners, for
example:

beginglyph(_Lacute);

use_accent(_L,_Acute);

endglyph;

578 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



Programming PostScript Type 1 Fonts Using METATYPE1: Auditing, Enhancing, Creating

(Note that a variant acute accent is used here— accents
over capital letters and ascenders are flattened a little bit
in Latin Modern fonts. It is one of many details that can
be conveniently controlled using the programming ap-
proach.)

The programming of characters that contain dia-
critical elements such as ogonek or cedilla is more ar-
cane, since it requires finding the common outline of
the character and diacritic. For this purpose, META-
TYPE1 provides the operation find_outlines. Al-
though fairly handy in practice, it is not as robust as one
would wish, because it behaves unstably if the curves
to be processed are tangent or nearly tangent. In gen-
eral, tangency presents an intrinsic problem, because it
is impossible to distinguish numerically between tangent
curves and intersecting ones. Metaphorically speaking,
tangency is an infinitesimal property, while computers are
discrete, and thus finite.

With METAFONT, things become even worse. For
example, the built-in METAFONT operator intersec-
tiontimes, which we need, sometimes cheats when dis-
joint curves are touching each other. Another opera-
tor, turningnumber, important in dealing with paths,
also is not sufficiently reliable (due to, for example, “tiny
loops”— see [5]).

METAFONT has been designed to produce bitmaps,
not outlines. In such applications, curves that nearly
touch each other or tiny loops that change unpredictably
the turning number of a curve do not cause too much
harm. Its descendant METAPOST, although it is no
longer bitmap-oriented, inherited METAFONT arith-
metic with all its imprecision; the same problems can be
thus likely encountered in METAPOST. One can live
with that but the price is the necessity of carefully con-
trolling the situations where nasty tangency-related is-
sues emerge. It is worthy of emphasizing that although
such control requires some proficiency in programming in
METAPOST, it is usually effortless.

The most complex aspect of a font enhancement is
obviously constructing a glyph from scratch. This topic,
in fact, has more to do with the creation than with the
enhancement of a font. Thus, we postpone it for a while.

From METAFONT to METATYPE1 Although the issue
of an automatic conversion of METAFONT font programs
into an outline form conforming to PostScript Type 1
standards was recognised relatively long ago, it has still
not been fully solved.

A partial solution was announced by Péter Szabó
during the EuroTEX 2001 meeting (Kerkrade, The
Netherlands [7]).

Szabó’s TEXtrace program produces outlines of ac-
ceptable quality, thanks to the efficacious Autotrace pro-
gram [8] by Martin Weber, which is employed for the

autotracing of high-resolution bitmaps. Nevertheless, we
call Szabó’s solution only “partial” since the process of au-
totracing cannot (yet?) be controlled in detail, while we
firmly believe that every detail should be controllable and
replicable in the realm of TEX and METAFONT/META-
POST.

Another solution which we prefer, but which might
be called “partial” as well, is a manual alteration of
METAFONT sources. We applied this approach to gen-
erate a METATYPE1 version of Donald E. Knuth’s logo
font. A sample page from the automatically generated
documentation of the font is shown in figure 5.

F. 5: A sample page from the automatically
generated documentation of the METATYPE1 version
of the logo font; light gray rectangles mark hints; a
high-resolution bitmap generated from the original
METAFONT sources (painted with a darker gray) is
placed in the background for comparison.

We would like to stress that it was a purely experi-
mental effort, because Taco Hoekwater had already pre-
pared a PostScript Type 1 version of the logo font using
Richard J. Kinch’s MetaFog. The differences of glyph
shapes between Hoekwater’s fonts and ours are negligi-
ble. More interesting is perhaps that we managed to ob-
tain metric files (tfm) identical with the original. Those
who are interested in technicalities may wish to down-
load both the sources and the results from the same ftp
address as the METATYPE1 package. A conversion of
Hoekwater’s PostScript Type 1 fonts into METATYPE1

sources using pf2mt1 can be also instructive.
In the LatinModern family, several glyphs were also

prepared using this method. In particular, we adapted

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 579



Bogusław Jackowski, Janusz M. Nowacki and Piotr Strzelczyk

the program for the letter C from the Computer Modern
METAFONT sources in order to construct the Euro cur-
rency symbol (with the addition of a bottom serif, since
the Euro symbol is philosophically based on a script E;
thanks to Werner Lemberg).

The point of the story is that, in principle, such
a conversion is possible. It remains an open question,
however, whether it is worthwhile to attempt to convert
all available METAFONT sources. On one hand, such
outline-oriented programs would certainly be useful, es-
pecially for those whowould like to generate new variants
of old fonts by playing around with parameters; on the
other hand, such a conversion is a laborious task, although
in most cases it is routine. In our opinion, however, con-
verting of existing METAFONT sources into an outline
form is not as urgent as the problem of the scarcity of
new fonts. But the creation of a new font is a challenge,
indeed.

Creation The issue of font creation, even limited to the
computer-oriented aspects, is a topic rather for a book
than for a section in a short article. Therefore, we will
not dwell too much on this inexhaustible subject. In-
stead, we simply sum up the experience we gathered
during the work on two replicas of Polish traditional
typefaces (figure 6): Antykwa Półtawskiego [3] and An-
tykwa Toruńska, the latter being intensively developed
by Janusz M. Nowacki.

F. 6: Two replicas of Polish traditional typefaces,
prepared with METATYPE1.

For both typefaces, only lead prints were available.
In many cases, therefore, we had to conjecture as to the
details. Surprisingly, this seemingly difficult task of re-
constructing and programming of glyph shapes, turned
out to be relatively simple. The adjusting of sidebearings
and kerns was significantly more difficult. But it is the
parameterization of a font that is really a tough problem.
We do not want to juggle lots of incoherent parameters.
Frankly speaking, we would not be able to. Recall that

the Computer Modern fonts are governed by more than
60 parameters— this would be certainly too much for
us.

After many experiments and discussions, we are
still unsatisfied with the current parameterization of An-
tykwa Półtawskiego. This is the main reason why we
have not publicly released its METATYPE1 sources so
far. We have not given up yet—we certainly hope
that before long we will eventually release tolerably tidy
METATYPE1 sources. On demand, however, they can
be obtained from the authors for private use.1

We have not heard about other book typefaces cre-
ated usingMETATYPE1. Our program has rather a small
number of users and is mainly employed for auditing and
enhancing fonts, although we know about a few fonts con-
taining geometrically regular glyphs (for example, geo-
graphical symbols) created using METATYPE1; among
them, perhaps the most interesting is a humorous font
displayed in figure 7.

F. 7: A dingbats font created with METATYPE1

by Jacek Kmiecik: the top three rows contain
characters of the font, the bottom rows present an
effect of superimposing of three characters (one
from each row); the inspiration for this work was
the font Head-DingMaker, signed by Nigma Fonts
(kentpw@norwich.net).

From a TEX user’s point of view, it is important that
METATYPE1 is suitable for creating TEX-oriented math
fonts (note that the popular afm2tfm program cannot be
used for generating math tfm files). We know about a
couple of such endeavours. In one of them we are in-
volved: it is an ongoing project of the Polish TEX Users
GroupGUST of furnishing Antykwa Półtawskiego with a
math extension. So far, however, nobody has announced
a release of a math font created withMETATYPE1. The
bright side of this otherwise disquieting situation is that
interesting events are still ahead of us.

1. In the near future, most probably before EuroTEX 2005,
the METATYPE1 sources of Latin Modern family of fonts will
be released publicly.

580 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



Programming PostScript Type 1 Fonts Using METATYPE1: Auditing, Enhancing, Creating

All in all, METATYPE1 promises well as far as we
can tell. But please feel forewarned that we are incor-
rigible optimists. Also feel forewarned, as we emphasize
repeatedly, that although there are many roads to the cre-
ation of fonts, the royal road does not exist.

Concluding remarks

We took for granted the PostScript Type 1 format is ex-
actly what we need. We are aware that the future be-
longs to a successor of Type 1 and TrueType, namely,
to OpenType, but we do not consider it a threat. Let
us quote a Microsoft faq [6]: OpenType [...] is an exten-
sion of Microsoft’s TrueType Open format, adding support
for Type 1 data. Moreover, there is an official Font Devel-
opment Kit for OpenType released by Adobe [1] which
offers, among several less or more useful functions, a con-
version of PostScript Type 1 fonts into their OpenType
counterparts. We bumped into some obstacles trying to
tame this tool, but finally managed to achieve the desired
outcome. The results are not easily verifiable because
OpenType, advertised since 1996, actually entered the
scene only a few years ago. Nevertheless, it seems that
such a conversion may be an appropriate solution for some
time to come.

We also have tried FontForge as a converter to
OpenType fonts. Again, we were successful, although
not without trouble. It is too early, however, to evaluate
the existing tools definitively, the more so as other tools
of this kind can be expected to become available in the
nearest future.

Is METATYPE1 a convenient tool for creating fonts
at present and in the future? The answer is up to users.
Certainly, it is a tool for creating open source fonts, that is,
truly open types.

Acknowledgements

Very many thanks to Jerzy Ludwichowski for his kind
support during the preparation of this paper.

References

[1] Adobe Font Development Kit for OpenType,
http://partners.adobe.com/asn/

developer/type/otfdk/

[2] Bogusław Jackowski, Janusz M. Nowacki,
Enhancing Computer Modern with accents,
accents, accents, TUGboat 24(1), Proc. of the
24th Annual Meeting and Conference of the
TEX Users Group, p. 64–74.

[3] Bogusław Jackowski, Janusz M. Nowacki,
Antykwa Półtawskiego: a parameterized outline
font, EuroTEX 1999, 20th – 24th September,
1999, Heidelberg, Germany, pp. 109 – 141;
the current version of Antykwa Półtawskiego
is available from ftp://ftp.GUST.org.pl/

pub/TeX/GUST/contrib/fonts/replicas

[4] Bogusław Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk, METATYPE1:
A METAPOST-based Engine for Generating
Type 1 Fonts, Proc. of EuroTEX 2001,
27th – 27th September, 2001, Kerkrade,
the Netherlands, pp. 111 – 119; the current
version of METATYPE1 is available from
ftp://bop.eps.gda.pl/pub/metatype1;
METATYPE1 for Linux can be downloaded
from ftp://ftp.ctan.org/tex-archive/

systems/unix/mtype13/

[5] Donald E. Knuth, The METAFONTbook,
Addison-Wesley, edition VII, 1992, pp. 152,
228 – 229.

[6] OpenType initiative FAQ, http://www.
microsoft.com/truetype/faq/faq9.htm

[7] Péter Szabó, TEXtrace, http://www.inf.bme.
hu/~pts/textrace/

[8] Martin Weber, Autotrace, http:
//autotrace.sourceforge.net/

[9] George Williams, FontForge—
a PostScript Font Editor, http:
//fontforge.sourceforge.net/

[10] Vladimir Volovich, CM-Super Font Package,
ftp://ftp.vsu.ru/pub/tex/font-packs/

cm-super/

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 581


