
Tralics, a LATEX to XML Translator

José Grimm
INRIA

2002, Route des Lucioles, BP 93
06902 Sophia Antipolis CEDEX

Jose.Grimm@sophia.inria.fr

http://www-sop.inria.fr/miaou/Jose.Grimm

Abstract

In this paper we describe Tralics, a LATEX to XML translator. A previous version of the software
(written in Perl) was used to obtain the pdf version of Inria’s “Rapport d’Activité” for year 2001.
The current version of the software (written in C++) is used for both the HTML and pdf version
for the year 2002. The XML generated by Tralics conforms to a local DTD, similar to the TEI;
it was converted to pdf using pdfTEX and the xmltex package, and the HTML was obtained via
an XSLT processor.

We explain here the philosophy of the software, its usage, limitations, and customization.

Résumé

Dans cet article nous décrivons le logiciel Tralics, un traducteur de LATEX vers XML. Une version
antérieure de ce logiciel, écrite en Perl, a été utilisée pour générer la version pdf du Rapport d’ac-
tivité de l’Inria en 2001. La version actuelle du logiciel, écrite en C++, a été utilisée pour obtenir
à la fois le HTML et le pdf de la version 2002 : nous avons utilisé une DTD locale, similaire à la
TEI, et pdfTEX plus xmltex pour obtenir le pdf.

Nous expliquons ici la philosophie de Tralics, son usage, ses limitations, et comment paramétrer
le logiciel.

Introduction

If you run Tralics on a document such as this article, you
will get as output an XML document that starts and ends
like this:

<?xml version=’1.0’ encoding=’iso-8859-1’?>

<!DOCTYPE eurotex SYSTEM ’tugboat.dtd’>

<!-- translated from latex by tralics 1.8a-->

<eurotex language=’english’>

<titlepage>

<ti>Tralics, a <LaTeX/> to XML translator</ti>

<NetA>Jose.Grimm@sophia.inria.fr</NetA>

<U>http://www-sop.inria.fr/miaou/Jose.Grimm</U>

<resume><p>

In this paper we describe Tralics,

...

<byear>1999</byear>

</citation>

</biblio></eurotex>

All that is needed for this example to work is to put,
in the configuration file read by Tralics, the following
lines:

BeginType eurotex

DocType = eurotex tugboat.dtd

BeginTitlePage

\maketitle <titlepage> "" ""

\title <ti> "No title"

\netaddress <NetA> "No address"

\personalURL <U> "No url given"

\resume E<resume> "Pas de résumé"

\abstract E<abstract> "no abstract"

\author + <author> <auth> "No authors"

\address p<address> "no address"

End

End

Once you have an XML version of the document,
you can use any tool you wish to process it (we used the
Gnome library, http://xmlsoft.org/), but some-
thing has to be done. There are typically two kinds of
applications. The first is that everybody publishing an In-
ria Technical Report has to give, together with the type-
set PostScript document, the start of the LATEX source,
which is processed by an ad hoc tool that adds a new
item to the publication database. One could use Tral-
ics to convert the partial document, and an XSLT style
sheet to extract from the <titlepage> element all rel-
evant information: author, title, abstract, keywords, etc.
In such a situation, the presence of an unknown element
like <LaTeX/> or an unexpected math formula causes no
problem; the element can be replaced by its name, and a
math formula removed (the current process behaves this
way).

A second type of application is the following: for

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 377

José Grimm

some reasons, the LATEX document needs to exist in both
PostScript and HTML form, and XML is used as an in-
termediate, common, format. In such a case there should
be little difference between the PostScript as seen by
the author (direct route) and the final version (the XML

route). As a result, the translation of \LaTeXmust match
the LATEX logo at best, and it is not possible to reject a
math formula under the pretext that it does not fit in the
MathML standard. As indicated on the figure on page
104 of [1], there are lots of possibilities, none of which
is very simple. In practice, even more tools are needed if
the objective is a complete web site.

This paper has two parts: we first explain the main
application of Tralics (why a new program, how it is used,
what is done with the resulting XML, etc.); after that, we
shall explain what Tralics does in the same order as the
LATEX Companion [3].

Why another LATEX to X translator?

Inria’s annual activity report has a long history, as long as
the history of Inria itself. In fact, each research team has
to report, each year, on its activity; this set of documents,
which we call the RA in what follows, is sometimes called
the scientific annexes to the annual report (which is a
bilingual document on glazed paper with lots of figures
and photographs, produced by a specialized company).

Since 1987, the RA has been typeset by LATEX, us-
ing a specific document style (or document class), see
[7]. Since then, the number of pages has evolved from
one thousand to three thousand, and the document is
no longer printed on paper (a CD-ROM version has been
available since 1999). On the other hand, anHTML ver-
sion of the document has been available since 1994; it
was produced by latex2html (using SGML as an inter-
mediate language for the first year).

In the years 1997–98, some discussions showed
that it would be nice to redesign the RA, using XML as
the intermediate language. We contacted some compa-
nies, but got no good answer: nobody was able to trans-
late the LATEX input into an XML output, no guarantee
was given about the quality of a printed version of the
XML, and mathematical support was very poor. These
three points will be discussed later on.

These discussions were not completely negative: a
new concept emerged, the “raweb”. Essentially, it is
formed of “modules” that can be read independently
(lots of nice properties of these modules are still to be im-
plemented; for instance, depending on the user profile,
these modules could be presented in different orders).
Each module is equivalent to a web page, and can be put
in a “classeur” (French equivalent of a loose-leaf file, it’s
like a caddy but elements are ordered; there is no offi-
cial English name for it). The objects in the caddy can
be re-ordered, and the caddy can be transformed into a

single HTML document (in 1999, the caddy contained
the LATEX version of the modules, hence was able to pro-
duce a PostScript document; we hope that next year it
will contain the XML version of the modules, but run-
ning pdfTEX on the web server is not an option).

Moreover, the notion of an RA-conforming doc-
ument was formalized (and this served as the basis of
the raweb DTD), and a syntax checker was written in
Perl. This checker has some intrinsic limitations: since
it was unaware of macro expansion and commands like
\csname, it was very easy to fool it.

Our new translator

In fall 2001, we decided to fabricate a translator and to
test it; the tool was based on ltx2x (a translator by Peter
Wilson, available on CTAN) and Ω (a TEX extension that
can produceMathML as a byproduct, [5]), together with
a Perl script that was used as a syntax checker, a module
splitter, and a pre- and post-processor. A second version
of the tool, written entirely in Perl, was used for the pdf
version of the RA2001.

The description of the software can be found in [4],
together with lots of examples that could not be trans-
lated. For instance this one:

\catcode ‘$=\active %$emacs

\def$#1~{\catcode‘$=3 zut}

$\left[1=2\right)$ is a formula~!

InMay 2002, we decided to completely rewrite the soft-
ware, and to call it tralics. The previous example
is understood correctly by Tralics, meaning that Tralics
groks catcodes, active characters, delimited arguments,
etc. More complicated is

{\catcode‘_\active\global\let_X}

\begingroup\lccode ‘\~=‘_

\catcode‘\~\active

\lowercase\relax{~\def~{u}\endgroup ~a}~

\MakeUppercase{abAB\ae\i}

This shows that \lowercase is fully implemented, in-
cluding funny details, like the optional \relax before
the open brace. One objective was to fully implement the
TEX macro expansion mechanism, including conditionals
(and to translate most LATEX constructs). The following
example provokes an error:

\font\foo=cmr10 scaled 1023

\setbox0=\hbox to 10pt{\foo p\hss}

\ifdim\dp0>0pt 1\else 2\fi

Here, the first line defines a command \foo that selects
some font; since we do not want to parse font metric files,
all these fonts are equivalent and \foo is a no-op. The
second line constructs a horizontal box and puts its con-
tent into \box0; we shall explain later what Tralics does
with the box. One thing is clear: the objective of Tralics

378 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Tralics, a LATEX to XML Translator

is not to split a paragraph into lines, so there is no packag-
ing, no overfull hboxes, no underfull vboxes. In fact, the
box specifications and the \hss command are ignored,
the resulting box contains only the letter p. If you ask
for the depth of the box, Tralics signals an error (and re-
turns 0).

Note that \ifvmode and \ifinner are part of
TEX’s macro expansion mechanism, but these commands
are not implemented, mostly because there is little re-
lationship between the modes of TEX and the modes of
Tralics. All you need to know is that the following lines
work as expected:

\ensuremath{\Omega}

\leavevmode

\mbox{\par}

The last line is silly: inside a box, \par cannot start a
new paragraph, and the resulting box is empty. For sim-
plicity, the \par token is allowed anywhere (as if every
command were prefixed with \long). Why \mbox is de-
clared \long in LATEX is beyond me.

The target language

The main job of a translator like Tralics is to read and an-
alyze the input document, manage it (and simplify, com-
plete, re-order, etc.) and produce a new document. The
big question here is: what elements should be chosen? In
the case of latex2html, the choice is limited to HTML

version 2.0, 3.0, 3.2, and 4.0. In the case of Tralics,
there is no predefined set of elements. In the opening
example, we used <U> for the \personalURL command,
purely to avoid long lines; usually, more suggestive names
should be used.

The default behavior of Tralics is defined by its
main application, namely the raweb, with the following
constraints: the resulting XML has to be converted to a
set of HTML pages, one page for each module; it has
to be converted to PostScript or pdf, one document per
research team, without loss in typographic quality; and
finally, mathematics should not be forgotten. Two style
sheets were used, one to produceHTML, and another for
pdf. Formatting a document is not trivial, because some
objects have to be evaluated more than once, sometimes
depending on the context (this explains why some LATEX
commands are fragile). In our case, the formatting was
done by TEX or pdfTEX, which was able to parse XML

files thanks to the xmltex package, see [1]. There is still
work to do, in particular concerning tables: the imple-
mentation of tables in fotex.sty is rather disturbing;
400 lines of TEX code were needed (for instance to patch
the behavior of <mfenced> and <mover>, and to get the
cover page right).

For the DTD, we first considered the Docbook
DTD, [10], and discarded it, because it was too com-

plicated. We then considered the TEI DTD, and sim-
plified it drastically. Lots of interesting material can be
found on that web site (http://www.tei-c.org/), in-
cluding PassiveTEX [8], a companion tool to xmltex, and
a model for the above-mentioned style sheets.

On the other hand, we added some features, in or-
der to implement figures, tables, math, etc. For obvious
reasons, we use the presentation elements of MathML

[2]. The design of the bibliography is not yet done (more
on this subject will follow).

There are nearly one hundred elements in this
DTD, 30 elements being specific to the raweb, 20 for the
bibliography; other elements are borrowed from TEI.
Via the configuration file, you can change the default
names (except those defined by MathML, and those spe-
cific to the raweb); using commands like \xmlelement,
you can generate additional elements. If you do so, you
can convince Tralics to use your own DTD.

The Tralics software, the documentation, and the
raweb DTD can be found at:

http://www-sop.inria.fr/apics/tralics/

Application to the raweb

The main application of Tralics can be found on Inria’s
web site:

http://www.inria.fr/rapportsactivite

For year 2002, 125 teams have written their activity re-
port (in LATEX, with one exception) and the result is over
3000 pages of pdf (A4 format, 10 point font size), re-
sulting in 3890 HTML pages, that occupy 598.386MB

of a CD-ROM. Translating these files took 100 seconds
(30 seconds if Tralics is compiled with the -O2 switch,
this shows that the C++ optimizer does a good job). The
most time consuming operation was the conversion from
XML to pdf (the xmltex parser is very slow), and pro-
duction of images (conversion from PostScript to pdf via
the epstopdf Perl script; and to png, using tools bor-
rowed from latex2html).

Lots of people were involved in the process: first,
the raweb team, which contributed to the design of the
raweb (the web site, the paper version, the idea of us-
ing XML, the DTD), the authors of the texts, the people
who collected the texts and who corrected some typos,
and Marie-Pierre Durollet who deserves special thanks:
she wrote some shell scripts, Perl scripts, cgi scripts, part
of the style sheets, etc., in fact, all that is needed to make
the web site function. She was also the first real user of
Tralics, in that she translated all the files, on her Linux
box (other people tried Tralics on SunOS, MacOS, Win-
dows).

One non-trivial point is the question of mathemat-
ics: there are some browsers (Amaya, Mozilla, etc.), that
understand MathML, or claim to do so, together with

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 379

José Grimm

plugins and other tools supposed to visualize MathML,
but we decided nevertheless to convert all the math. In
fact, Tralics comes with a Perl script (a bit over one thou-
sand lines), that reads an XML file, and converts math and
images.

Image post-processing Consider a simple, classical, exam-
ple:

\begin{figure}

\begin{center}

\includegraphics{miaou_transf.ps}

\end{center}

\caption{Modèle de transducteur.}

\label{trans}

\end{figure}

It is translated into

<figure file=’miaou_transf’ id=’uid30’>

<head>Modèle de transducteur.</head>

</figure>

As can be seen, the argument of the \label command
was normalized from ‘trans’ to ‘uid30’ and became an at-
tribute of the figure element, the centering environment
was ignored, the underscore treated as a normal charac-
ter, the extension of the file name was removed, and the
file became an attribute of the figure element (see below
an example where more than one image appears in a fig-
ure environment). The post-processing script has the job
of making sure that the image exists in PostScript, pdf
and png formats. It also modifies the XML:

<figure aux=’image_1.png’

file=’miaou_transf’ id=’uid30’>

<head>Modèle de transducteur.</head>

</figure>

and the HTML result will be:

<div align="center">

<table>

<caption align="bottom">

Figure 1.

Modèle de transducteur.

</caption>

<tr><td><img alt="miaou_transf"

src="image_1.png"></td></tr>

</table>

</div>

A few remarks are needed: the initial LATEX environment
is a floating one, so that the result is outside a <p> ele-
ment, and using <div> for grouping is justified. The fig-
ure and its caption are centered. Note that the image is a
cell of a table, because this is the easiest way to associate
a caption to the table.

The è character was transformed into è by an
ad hoc program, because, for some unknown reasons, the

style sheet refused to use latin1 encoding, forcingUTF-8
instead, an encoding not understood by the program that
indexes Inria’s web site.

The figure was the first one in the file, so that the
style sheet numbered it as figure one (in the next ex-
ample, there is no \caption, hence the figure has an
empty <caption>, but nevertheless a unique number).
The HTML translation of \ref{trans} is something
like <a...>1. The <a> element has a href attribute
whose value depends on the name of the label, and the
current web page, which was renamed from ‘resonn’, the
name given by the author, to ‘module7’, which has no
meaning (searching for ‘module50’ on Inria’s web site re-
veals that three teams have written at least 50 modules).
The important point however is the content of the <a>
element: the value 1 is not computed by Tralics, but by
the style sheet.

Another example is the following.

\begin{figure}[htbp]

\begin{center}

\begin{tabular}{ccc}

\includegraphics[width=3.5cm]{imgl}&

\includegraphics[width=3.5cm]{imgc}&

\includegraphics[width=3.5cm]{imgr}\\

cap l&cap c&cap r

\end{tabular}

\end{center}

\end{figure}

The same effect could be achieved with the subfigure en-
vironment, but we wanted to give an example of a table.
Note that, if more than one image is to be put in a figure,
we suggest using a table, since there are still unresolved
problems regarding spacing. The translation of the pre-
vious example is the following

<figure rend=’array’ id=’uid9’><p>

<table rend=’inline’> <row>

<cell><figure file=’imgl’/></cell>

<cell><figure file=’imgc’/></cell>

<cell><figure file=’imgr’/></cell>

</row><row>

<cell>cap l</cell>

<cell>cap c</cell>

<cell>cap r</cell>

</row></table></p>

</figure>

In order to reduce the size, we did omit the halign =

center attributes for the six <cell> elements, and the
width=3.5cm, rend=inline attributes of the three non-
toplevel <figure> elements. The HTML translation is
a table in a table, the inner table has no caption, the outer
table has an empty caption. One of these two tables could
be removed.

380 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Tralics, a LATEX to XML Translator

Math post-processing Note that a table or a figure is a float
(hence is numbered) if and only if its rend attribute is not
inline; on the other hand, math formulas never float, but
are numbered only if they are non-inline, and have a la-
bel. In what follows, we shall distinguish between the
math (defined by MathML) and the formula (something
we borrowed from the TEI DTD). It is the formula that
has a label (hence a number), and this explains why we
have some troubles translating environments like align
and commands like \tag. Nevertheless, the translation
of the simple formula K 6= Γ is

<formula type=’inline’><math><mrow>

<mi>K</mi><mo>≠</mo><mi>Γ</mi>

</mrow></math></formula>

For completeness, we show here the XSL-FO output that
is used to convert the formula into pdf (complete code for
the example above, skeleton for a display-math formula,
numbered and unnumbered).

<m:math overflow="scroll"><m:mrow>

<m:mi>K</m:mi>

<m:mo>≠</m:mo>

<m:mi>Γ</m:mi>

</m:mrow></m:math>

<fotex:displaymath>

display-math stuff

</fotex:displaymath>

<fo:inline id="uid11"><fotex:equation>

numbered math stuff

</fotex:equation></fo:inline>

In this case, the Perl script that handles images and
math formulas classifies the formula as a simple one,
formed of three tokens in a row, a Latin letter, a sym-
bol and a Greek letter. It replaces the formula by the
following XML code.

<hi rend=’it’>K</hi>

<img src=’img_other_ne.png’ alt=’\ne’

width=’14’ height=’26’ align=’middle’/>

<img src=’img_Gamma.png’ alt=’Γ’

width=’12’ height=’13’ align=’bottom’/>

Images for Greek letters and other symbols were pre-
computed (by latex2html). The dimensions given here
are nearly twice the size of a ten-point 6= and Γ, except
that the depth of the 6= should be 4, and there is no way
to indicate a depth in HTML. That’s the reason why we
indicate a total height plus depth of 26, together with an
‘align=middle’ attribute. The resulting HTML is ugly
(too much blank space with the line and the following
one), and uses a deprecated feature, but we do not know
how to do better. The resulting HTML is

K

<IMG width="14" height="26" align="middle"

border="0" alt="\ne"

src="../images/img_other_ne.png">

<IMG width="12" height="13" align="bottom"

border="0" alt="Γ"

src="../images/img_Gamma.png">

Let’s give another example: L
2 → L

∞ is translated
into MathML as

<math><mrow>

<msup><mi>L</mi><mn>2</mn> </msup>

<mo>→</mo>

<msup><mi>L</mi><mi>∞</mi></msup>

</mrow></math>

The result here is a single image:

<img align = ’bottom’

width =’71’ height =’13’

src=’math_image_1.png’ border=’0’

alt=’Im1 ${L^2\rightarrow L^\infin }$’/>

A formula of the form a
b or ab is considered simple

(and translates to <sup> or <sub>) in the case where b

is an HTML character. Here, one exponent is infinity,
hence an image is needed. Note how the alt field is con-
structed: we try to reconstruct the TEX formula from
the MathML element. The first token, the Im1, indi-
cates the image number, and is only useful for debugging.
Constructing the image is not so trivial. First, a file is cre-
ated that contains lines of the form

<formula id="1"><math><mrow>

<msup><mi>L</mi> <mn>2</mn></msup>

<mo>→</mo>

<msup><mi>L</mi><mi>∞</mi></msup>

</mrow></math></formula>

In fact, the file contains all formulas that need to be con-
verted, with a unique id identifying the image. The xml-
lint processor is used to replace entity names by their
Unicode values. The resulting file is processed by LATEX,
in the same fashion as the main document, in order to
get a DVI file. The interpretation of the <formula> el-
ement (which is absent from the XSL-FO file) uses code
borrowed from latex2html, which has two side effects.
First, the log file contains a line like

l2hSize :1:8.14003pt::0.0pt::48.73616pt.

and second, each page of the DVI file contains a single
math formula in its upper left corner. For each such page
a PostScript file is generated by dvips and then con-
verted to png via the pstoimg utilities, which use the
size information shown above. After a magnification fac-
tor of 40%, this gives a resulting image of 13 by 71 pixels,
and this information is pushed back in the XML file.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 381

José Grimm

The structure of a LATEX document

Tralics assumes that the document to be translated con-
forms to LATEX standards: that there is a line with
\documentclass, followed by some lines containing
\usepackage commands, followed by a document en-
vironment. This is a very special environment, be-
cause its content is at brace level zero (as in standard
LATEX), and the tokens read by \AtBeginDocument and
\AtEndDocument

are inserted at the right place, for instance

\documentclass{article}

\usepackage{calc}

\AtBeginDocument{start}

\AtEndDocument{end}

\newlength{\foo}

\AtEndDocument{\AtEndDocument{ realend}}

\begin{document}

\setlength{\foo}{1cm+3pt}

\the\foo

\end{document}

This line is not translated

would produce essentially the following

<p>start

31.45274pt

end realend</p>

There is a special hack here: a special \endinput token
is inserted, whose effect is to stop translation of the cur-
rent file (after the tokens remembered by the document
hook), but the job of the translator continues, because it is
at this moment that the bibliography is translated: Tral-
ics has the list of all \cite commands, so it can do the
equivalent of BTEX. The resulting bibliography is in-
serted where the \bibliography command is located.
It is an error if a \cite command is seen after the end
of the document (i.e. comes from a BTEX file).

Parameterization The first job of Tralics is to read the
source file and find a \documentclass command, in
order to apply document specific rules found in the
.tralics_rc file (the configuration file, it can be in the
current or home directory). In the case where the con-
figuration file contains

BeginType article

on package loaded calc CALC = "true"

on package loaded foo/bar FOO = "true"

End

then, whenever the document class is article (trailing
digits are ignored in the name) the two lines are exe-
cuted. It follows that the root element of the resulting
XML document will have the attribute CALC set to true,
in case the calc package is loaded, and FOO is set to true
in case the foo package is loaded with the bar option. By
default, the attribute language is set (to french or english)

when Tralics is able to determine the main language, ei-
ther because (as in this document), english is an option
to \documentclass, or because the babel package is
loaded with recognized parameters. Finally, the mean-
ing of \setlength depends on whether the calc pack-
age is loaded or not.

Sectioning commands The XMLmodel of Tralics is based
on the notion of paragraph (\par command, <p> ele-
ment). This element can contain inline stuff (text, im-
ages, tables, math formulas); it is at the same level as non-
inline stuff (images, tables, math, notes, bibliographic en-
tries), and can be contained in a sectioning command (for
instance the paragraph is in a subsection in a section in
a chapter in a part). These elements have in general a
number (computed by an external program rather than
defined by the user, never computed by Tralics), and can
be referenced. The translation of a sectioning command
is a <divi > element, where i is an integer between 0 and
6. Example:

\section{x}A\label{a}

\subsection{y}

B\label{b}C\label{c}D

\paragraph{z}

\ref{a}\ref{b}

\subsection{t}

gives

<div0 id=’uid1’><head>x</head>

<p>A</p>

<div1 id=’uid2’><head>y</head>

<p>BCD</p>

<div3 id=’uid3’><head>z</head>

<p><ref target=’uid1’/>

<ref target=’uid2’/></p>

</div3>

</div1>

<div1 id=’uid4’><head>t</head>...

By default, \section is the top-level division, but chap-
ters are allowed in a report, and parts in a book. The
‘...’ is not part of the output, it just indicates the current
position in the XML tree. Note that Tralics is in outer
vertical mode, said otherwise, the occurrence of a char-
acter will imply the creation of a <p> element; in LATEX,
the current mode would depend on the document class.
This is one reason why \ifvmode is not implemented.
The example shows a logical error: there is a <div3>
element in a <div1> element. It would be numbered
1.1.0.1 in LATEX, and 1.1.1 (without the zeros) using an
XSLT processor.

Cross references Tralics implements \label and \ref

but not \pageref. The basic idea is to put a mark in the
XML document, and use references to this mark. The

382 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Tralics, a LATEX to XML Translator

mark is an attribute of type ID, and there are some limi-
tations in XML that do not exist in LATEX (for instance no
element type may have more than one ID attribute spec-
ified, and an ID cannot start with a digit). In order to
remove these difficulties, Tralics uses its own list of IDs
(uid1, uid2, etc.). Associated with the mark is a value,
produced by \p@foo\thefoo. This mechanism is not
implemented in Tralics: the value associated to a label is
not in the XML document but must be computed by the
application (the style sheet for instance). In order to dis-
tinguish between Figure 4 or Table 5, the label must be
associated with a figure or a table (a footnote, an item in a
list, a formula, a division, that’s all). Hence the following
changes with LATEX: inside a figure or table environment,
there must be at most one label, and it can be before or
after the caption. A math formula can have a label only
if it is a display math equation, and it is numbered only
if it has a label. See example above. There is no need to
call Tralics twice or more: a single pass is enough.

References to external documents are understood.
In the following example, we switch to French in order
to show the behavior of special characters (like colon and
underscore) with or without the \url command:

\language=1

\href{http://foo_ba}{http://foo_bar}

\href{\url{http://foo_ba}}{http://foo_bar}

The translation is

<xref url=’http://foo_bar’>

http ://foo_ba</xref>

<xref url=’http://foo_bar’>http://foo_ba

</xref>

Basic formatting tools

The following example is from page 218 of The TEXbook
[6], with an addition to verify that \trialdivision is
really called 132 times.

\tracingall

\countdef\td 4 \td=0

\newif\ifprime \newif\ifunknown

\newcount\n \newcount\p \newcount\d

\newcount\a

\def\primes#1{2,~3% assume that #1 >= 3

\n=#1 \advance\n by-2 % n more to go

\p=5 % odd primes starting with p

\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat}

\def\printp{, %

\ifnum\n=1 and~\fi %

\number\p \advance\n by -1 }

\def\printifprime{\testprimality

\ifprime\printp\fi}

\def\testprimality{{\d=3 \global\primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat}}

\def\trialdivision{\a=\p

\global\advance\td by 1

\divide\a by\d

\ifnum\a>\d \unknowntrue\else\unknownfalse\fi

\multiply\a by\d

\ifnum\a=\p \global\primefalse

\unknownfalse\fi}

The first thirty prime numbers are \primes{30}.

trialdivision macro was expanded \the\td\ times

This example works in LATEX and in Tralics. All TEX
primitives that start with ‘tracing’ are implemented, al-
though most of them refer to behavior that is not imple-
mented in Tralics. If you run Tralics on the previous ex-
ample, the log file will contain:

[706] \countdef\td 4 \td=0

{\countdef}

+scanint for \countdef->4

{\td}

+scanint for \td->0

[709] \newcount\a

{\countdef \a=1550}

You can see the input source line whenever it is read,
with its line number, and the commands that are evalu-
ated. On page 269 of The TEXbook, you can see the def-
inition of an integer. This is so complicated that Tralics
prints the value whenever scanned. The last line shows
that the \a command will access the internal tables at po-
sition 1550.

\iterate->\ifnum \n >0 \printifprime

\advance \p by2 \relax \expandafter

\iterate \fi

+\ifnum

+scanint for \ifnum->28

+scanint for \ifnum->0

+iftest true

Here we can see that the \loop macro is implemented
as in LATEX and not as in plain TEX. The \iterate to-
ken is a private one, the \loop macro does not kill your
command (but the loop inside the loop will modify it,
and this explains why extra braces are needed).

{begin group character}

+stack: level + 2

The first line indicates that Tralics has seen an open brace
(technically, a character of catcode one), and that it cre-
ates a new frame on the save stack (the outer level is num-
bered 1, as in TEX).

{end group character}

{Text:, 5}

+stack: restoring \ifunknown

+stack: restoring integer value 1550 0

+stack: restoring \iterate

+stack: restoring integer value 1549 0

+stack: level - 2

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 383

José Grimm

And this is done when Tralics sees the closing brace. It
restores two commands and the two registers \a and \d

(the association between \d and the number 1549 can be
found in the log file). A side effect of seeing the closing
brace is to flush the XML buffer (what follows the ‘Text:’
on the second line), for the case where the current font
might change.

List structures Standard LATEX lists are implemented, but
they are not customizable. The only non trivial part
is that the optional argument of the \item command
should be evaluated in a group. As an example:

\begin{itemize}

\item a

\item [\it b] c

\begin{enumerate}

\item d

\begin{description}

\item e

\end{description}

\end{enumerate}

\end{itemize}

This will translate to

<list type=’simple’>

<item id=’uid14’><p>a</p></item>

<label><hi rend=’it’>b</hi></label>

<item id=’uid15’>

<p>c</p>

<list type=’ordered’>

<item id=’uid16’><p>d</p>

<list type=’description’>

<item id=’uid17’><p>e</p>

</item>

</list>

</item>

</list>

</item>

</list>

Here, in order to make the XML output more read-
able, we added and removed some space and newline to-
kens. The general rule for Tralics is to output one space
(or newline character), whenever TEX would output one
space character. In particular, the TEX scanner converts
two consecutive newline characters in a space character
and a \par token. This space character will be output
by Tralics as a newline character.

Footnotes The translation of

\footnote{a}

\footnote{Y \AddAttToLast{x}{y}b\par

\AddAttToCurrent*{place}{here}c}

is

<note id=’uid14’ place=’foot’>a</note>

<note place=’here’ id=’uid15’>

<p x=’y’>Y b</p>

<p>c</p>

</note>

Two remarks: each note has a uid, hence can be refer-
enced, but there is nothing special about it (no counter,
no mark, no restrictions).

On the other hand, the example shows how to add
an attribute to an XML element, either the element cre-
ated latest (here the <p> element that contains the text
of the footnote), or the current element (the footnote,
since the translation of \par does not create a new <p>

element, it is the translation of the character c that forces
a second <p> in the note). In the unlikely event that
the element already has an attribute of the same name
(for instance, a footnote has a default place attribute), the
command is ignored—unless you use its starred form to
overwrite.

New elements It is easy to use new elements, just say

\begin{xmlelement}{main-elt}

\begin{xmlelement}{sub-elt1}

text1

\end{xmlelement}

\begin{xmlelement}{sub-elt2}

text2

\end{xmlelement}

\AddAttToLast{sb2-att}{value1}

\AddAttToCurrent{foo-att}{att-value’’}

\end{xmlelement}

and you will get

<main-elt foo-att=’att-value''’>

<sub-elt1>

text1

</sub-elt1>

<sub-elt2 sb2-att=’value1’>

text2

</sub-elt2>

</main-elt>

You can also try

\hbox{a\it b}

\vbox{c\it d}

\newcommand\AGtest{AG}

\setbox0=\xbox{myelt}

{\aftergroup\AGtest e\it f}

\copy0 \copy0

This will work in Tralics, since either an \hbox or a
\vbox is just an unnamed \xbox. The braces serve for
grouping, and as argument delimiters. The result is

a<hi rend=’it’>b</hi>

c<hi rend=’it’>d</hi>

AG

<myelt>e<hi rend=’it’>f</hi></myelt>

384 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Tralics, a LATEX to XML Translator

<myelt>e<hi rend=’it’>f</hi></myelt></p>

Note: when Tralics constructs an element, the equiva-
lent of a box in TEX, it is in a special mode that does not
match any of TEX’s modes.

Verbatim material A document like this one uses lots of
verbatim material. Tralics is familiar with standard ver-
batim environments, and some extensions. For instance,
the translation of

\DefineShortVerb{\|}

you can say |\foo| or \verb*+foo bar+.

\begin{Verbatim}

verb line1

$<&\>

\end{Verbatim}

would be

you can say <hi rend=’tt’>\foo</hi>

or <hi rend=’tt’>foo␣bar</hi>.</p>

<p noindent=’true’><hi rend=’tt’>

verb line1</hi></p>

<p noindent=’true’><hi rend=’tt’>

$<&\></hi></p>

<p noindent=’true’>

Note here that the \end commands check whether the
environment is followed by an empty line. If it is not, a
\noindent token is inserted.

The layout of the page

The essential idea of Tralics is that the result of the trans-
lation is independent of the layout of the page.

But if you give 0.8\textwidth as the width of a
figure, Tralics will replace this by 12cm, because some-
thing has to be done. Optional arguments of sectioning
commands are ignored: in general one would use them
for marking the document. We have implemented the
TEX markup commands, but they do nothing; we think
of extending the functionalities of the title-page mecha-
nism of Tralics. In fact, if the title-page specifies some-
thing like (see opening example):

\address p<address> "no address"

then there is a command \address that takes one argu-
ment, whose translation is put in an <address> element,
and recorded. The ‘p’ marker says that paragraphs are
allowed, an ‘E’ marker indicates that the command is an
environment, a ‘+’ that the command can be issued more
than once, etc. As you can see, there is still work to be
done.

Tabular material

There are essentially four points to be considered: ta-
bles in math mode (described later), standard LATEX tab-
ular (see earlier example), the tabbing environment (not

implemented, because it implies implementing all type-
setting algorithms), and the \halign primitive, which is
much too complicated to implement.

One problem is how to translate a table specification
such as r||l. Tralics understands that there are two col-
umns, right and left justified, with a rule on the right and
the left, but this is impossible to translate into HTML,
that knows only |r|l| or rl. The \hline and \cline

are implemented, but suffer from the same limitations.

Mastering floats

There is in general enough flexibility for adding or re-
moving one line on the current page, so that, for instance,
TEX is not faced with the dilemma of either putting a
section title at the bottom of a page, or generating a hor-
ribly underfull page. The situation is quite different for
tables or images, which can be much larger; this is the
reason why they can float (i.e. items are put in the output
in a different order). Handling of floats is non-trivial; in
some cases, the best thing to do is to resize (the image,
or even the text).

The philosophy of Tralics is the following: in the
case where the XML is translated into HTML, no object
has to float. On the other hand, since the author of the
document is not the person that does the final typeset-
ting, no fine tuning of floats can be achieved. As a result,
Tralics just ignores optional arguments of float environ-
ments, float parameters, and things like wrapfig envi-
ronments.

Font selection

The introductory example shows some features of Tral-
ics. For instance, the default input encoding of the doc-
ument is latin1, and this is the same as the output en-
coding: the translation of é\oe will be éœ, you
can also say \’e\.E if you want éĖ; all Unicode charac-
ters with code less than x180 are recognized. If you need
other characters, you must use a construct like

Hàn Th\xmllatex{&\#x1ebf;}{\’{\^e}} Thành

The command \xmllatex takes two arguments, the first
one is ignored by standard LATEX, and the second one by
Tralics. Note how the sharp sign is protected. See the
Unicodemanual [9] for the numeric value x1ebf. There
is no way to construct a logo, like the TEX logo, with
\kern or \lower, but instead, you could say

\newcommand\MyLogo{\xmlemptyelt{MyLogo}}

and define a <MyLogo/> element in your DTD. You
could also use a parameterized version of the logo, like
this

\newcommand\ParLogo[1]{\xmlelt{PLogo}{#1}}

\MyLogo

\ParLogo{2ε}

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 385

José Grimm

The resulting XML document will contain

<MyLogo/>

<PLogo>2<formula type=’inline’><math>

<mi>ϵ</mi></math></formula></PLogo>

As explained above, Tralics knows of the \font

command, but this command should not be used. It is
much better to say something like

{\bfseries a\itshape b\small c\ttfamily d}

which translates into:

<hi rend=’bold’>a</hi>

<hi rend=’it’><hi rend=’bold’>b</hi></hi>

<hi rend=’small’><hi rend=’it’>

<hi rend=’bold’>c</hi></hi></hi>

<hi rend=’small’><hi rend=’it’>

<hi rend=’tt’><hi rend=’bold’>d</hi>

</hi></hi></hi>

As this example shows, a font is defined by a size, shape,
series and family, nothing more (is it possible to con-
vert to HTML a document written in Computer Mod-
ern Funny Roman using the U encoding?). Tralics un-
derstands all ten standard font sizes, but uses only three
(a normal size, a larger one, and a smaller one); there are
some bugs in the implementation. In an example like this

{\it a\par b}

a new paragraph is created when the b character is
sensed, and a font element must be inserted in this para-
graph, since the current font is not the default one.
The commands \it, \textit, \itshape have the same
meaning as in LATEX. The \em command also (but Tral-
ics does not know if the current font is slanted or not, and
may generate the wrong result).

Higher mathematics

TEX has a reputation of producing very high quality
mathematics, and people at the AMS have worked hard
to make it easy to use. As a result, trying to translate the
entire AMS functionality to MathML is nearly impossi-
ble (too many features have no equivalent). Even convert-
ing the MathML into pdf was a challenge (there are still
unresolved problem, like tables in tables, missing charac-
ters, etc.), and the rendering by tools like Amaya is a bit
strange.

The translation of
∫
∞

0
F(x)2 dx is unsatisfactory to

us. In particular, Tralics fails to notice that the exponent
applies to the ‘F(x)’, and we wonder whether an expert
system should be used (consider the scope of the <mrow>
element in the translation below).

<math>

<mrow>

<msubsup><mo>∫</mo>

<mn>0</mn> <mi>∞</mi>

</msubsup>

<mrow><mi>ℱ</mi><mo>(</mo>

<mi>x</mi> </mrow>

<msup><mo>)</mo><mn>2</mn> </msup>

<mspace width=’3pt’/><mi> d </mi>

<mi>x</mi>

</mrow></math>

LATEX in a multilingual environment

Inria’s Rapport d’Activité is, by nature and law, a French
document. The RA, or the raweb, being just its scientific
annex, can be in English (with a French summary). It
was decided that starting in year 2003, the whole thing
(the source document, the web site, the logo, the these-
pages-in-French-only pointers) will be in English. Thus,
special attention was given to this problem in Tralics. For
instance, whether the title of the bibliography should be
“References” or “Références” does not depend on Tral-
ics, but on the style sheet (or the DTD). On the other
hand, one may imagine a document (like this one) that
has an abstract in two languages, and that the first ab-
stract should be in the main language. Using the title
page mechanism of Tralics will give you a fixed order for
the XML result, but as the introductory example shows,
the main language is an attribute of the root element (and
it is the \maketitle command that selects the current
language as main language).

In fact, TEX provides a \setlanguage command,
which is ignored by Tralics, and a \language command
that selects a language: Tralics assumes that English has
number zero, French has number one, and your favorite
language has number two (in fact, only two languages are
really supported). The BTEX translator (see below)
uses the value of the current language for the interpre-
tation of strings like ‘jan’. The following example shows
the differences between French and English:

\language =1

<<guill’’ ponctuation;

\verb+<<guill’’ ponctuation;+

a\xspace b\xspace !

\language=0

<<guill’’ ponctuation;

a\xspace b\xspace !

The translation is

« guill » ponctuation ;

<hi rend=’tt’><<guill

’​’​

ponctuation;</hi>

a b !

« guill’’ ponctuation;

a b!

The important points are the following: a space is added
before some punctuation characters (colon, semi-colon,
guillemets, etc.), even when the xspace package (which

386 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Tralics, a LATEX to XML Translator

is language independent) thinks it useless. Everything
that looks like opening or closing double quotes is con-
verted to French guillemets, with the proper spacing.
Note the translation of the \verb command: the two
single quotes are followed by a special (invisible) char-
acter, the purpose of which is to avoid ligatures in the
case where the XML is processed by TEX; the line breaks
were manually added in order to avoid overfull lines.

Portable graphics in LATEX

We tried to implement some commands, for instance

\setlength{\unitlength}{.0075\textwidth}

\begin{picture}(90,50)

\put(40,25){\framebox(10,10){$H(s)$}}

\put(19,30){\vector(1,0){9}}

\put(60,15){\vector(-1,0){10}}

\put(17.75,0.5){\oval(1.5,1.5)[r]}

\end{picture}

The result is given below. However, for the RA, we
copied the content of the picture environment in a file,
called LATEX on it, and replaced the picture by a refer-
ence to the PostScript file.

<picture width=’90.0pt’ height=’50.0pt’>

<put xpos=’40.0pt’ ypos=’25.0pt’>

<box width=’10.0pt’ height=’10.0pt’>

<formula type=’inline’><math>

<mrow><mi>H</mi><mo>(</mo><mi>s</mi>

<mo>)</mo></mrow></math>

</formula></box></put>

<put xpos=’19.0pt’ ypos=’30.0pt’>

<vector xdir=’1.0pt’ ydir=’0.0pt’

width=’9.0pt’/></put>

<put xpos=’60.0pt’ ypos=’15.0pt’>

<vector xdir=’-1.0pt’ ydir=’0.0pt

width=’10.0pt’/></put>

<put xpos=’17.75pt’ ypos=’0.5pt’>

<oval xpos=’1.5pt’ ypos=’1.5pt’

specs=’r’/></put>

</picture>

Using PostScript

Since our main application uses pdf in preference to Post-
Script, we will not speak about PostScript here (some
people use psfrags in order to replace PostScript fonts
in their figures by standard LATEX ones; this is strange).

Index generation

Tralics offers no specific tool.

Bibliography generation

The design of the bibliography of the raweb is still a
subject of research. We were faced with the following

problems: first, the raweb uses three different BTEX
files, and the translation of one of these files depends on
whether it was put on the web or printed on paper, and
the items in the main bibliography file are grouped in dif-
ferent categories, depending on their type; a total of four
bst files are used. One idea was to parse the bbl files (but,
if you look at the sources of the footbib package, you
can see how hard it is; by the way, bibliographic entries
are no longer footnotes). The second idea was to mod-
ify the bst file in order to generate an environment per
item, in order to simplify the parsing. The third idea was
to abandon BTEX; since there is still no XML standard
for bibliographies, and no universal tools, we just wrote a
BTEX to LATEX translator. For instance, the TEXbook
entry looks like this

\citation{Knu84}{cite:texbook}{year}{book}

\bauteurs{\bpers{D. E.}{}{Knuth}{}}

\cititem{btitle}{The \TeX book}

\cititem{bpublisher}{Addison Wesley}

\cititem{byear}{1984}

\endcitation

This part of the translator reads the BTEX file, ex-
pands the BTEX macros (predefined, or used defined),
removes useless stuff, sorts the entries, and returns the
LATEX equivalent (in fact, the stuff is written in a bbl file,
but only for you to see what happens in case of error).
The same entry processed by BTEX:

\bibitem[\protect\citeauthoryear{Knuth}

{Knuth}{1984}]{texbook}

Knuth, D.~E.

\newblock {\em The \TeX book}.

\newblock Addison Wesley, 1984

\UseExtraLabel{}.

A comparison shows that BTEX adds some tokens that
would be very hard to remove: tilda, comma, period, to-
gether with some others (\em, \newblock) that can be
context sensitive. On the other hand, the LATEX to XML

translator generates

<citation from=’year’ key=’Knu84’

id=’cite:texbook’ type=’book’>

<bauteurs>

<bpers prenom=’D. E.’ nom=’Knuth’/>

</bauteurs>

<btitle>The <TeX/>book</btitle>

<bpublisher>Addison Wesley</bpublisher>

<byear>1984</byear>

</citation>

so that it is up to the style sheet to do all the real work
(using \em for the title if it’s a book, use the plural of
‘editor’ if there is more than one, etc.). Each style has
its own peculiarities: the tugboat style generates a spe-
cial optional argument for \bibitem, but the raweb tools

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 387

José Grimm

need the from and type attributes for sorting (problem
here: citations are already sorted).

Conclusion

We have shown in this paper that a LATEX to XML transla-
tor can be very useful, when you have the tools to manage
the resulting XML. We hope that standardization will
continue, so that it will become easier to write such tools,
and adapt them. Putting high quality mathematics on the
web is still a challenge, and we hope that others will ap-
preciate our contribution.

References

[1] David Carlisle, Michel Goossens, and Sebastian
Rahtz. De XML à PDF avec xmltex et PassiveTEX.
In Cahiers Gutenberg, number 35-36, pages 79–
114, 2000.

[2] David Carlisle, Patrick Ion, Robert Miner, and
Nico Poppelier. Mathematical Markup Language
(MathML) version 2.0. http://www.w3.org/

TR/MathML2/, 2001.

[3] Michel Goossens, Frank Mittelbach, and Alexan-
der Samarin. The LATEXCompanion. Addison Wes-
ley, 1993.

[4] José Grimm. Outils pour la manipulation du rap-
port d’activité. Technical Report RT-0265, Inria,
2002. http://www.inria.fr/rrrt/rt-0265.
html.

[5] Yannis Haralambous and John Plaice. Produire
du MathML et autres . . .ML à partir d’Ω : Ω se
généralise. In Cahiers Gutenberg, number 33-34,
pages 173–182, 1999.

[6] Donald E. Knuth. The TEXbook. Addison Wesley,
1984.

[7] Philippe Louarn. Une expérience d’utilisation de
LATEX : le Rapport d’activité de l’INRIA. Cahiers
Gutenberg, (0):17–24, apr 1988.

[8] Sebastian Rahtz. Passive TEX. http://www.

tei-c.org.uk/Software/passivetex/,
2003.

[9] The Unicode Consortium. The Unicode Standard,
version 3.0. Addison Wesley, 2000.

[10] Norman Walsh and Leonard Muellner. Docbook:
The Definitive Guide. O’Reilly & Associates, Inc,
1999.

388 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

