
Very High Level 2-dimensional Graphics with TEX and XY-pic

Kristoffer Høgsbro Rose
BRICS, University of Aarhus (DAIMI), Ny Munkegade building 540, 8000 Århus C, Denmark
krisrose@brics.dk

URL: http://www.brics.dk/~krisrose/

Abstract

A problem with using pictures in TEX and LATEX documents is that there is no
natural universal notation encompassing all possible diagrams, flow-charts, etc.In
this paper we argue why one should not attempt such generality but rather design
custom embedded graphic languages for classes of similar pictures.

The main argument is the usual one for markup languages: using a spe-
cialised high-level notation means that the source captures the essential properties
of the picture. Not only does this make it easier for the user, who can concentrate
on contents rather than form, but it also makes it easier to abstract out inessential
style issues such that the “picture style” can be varied without changing the
source. The main concern is that implementing a large number of such languages
is only feasible with access to a versatile and powerful drawing library such that
the amount of hacking required for each language is minimal.

As an example we survey how one can include a small “directory tree” in a
paper, and we design and implement an embedded tree drawing language useful
for this purpose. We illustrate the generality of the notation by showing how the
same source can be used to generate the tree and even to grow it (by animating
it) following the structure information. We finally present the implementation in
TEX using XY-pic to produce the actual graphics.

Introduction

A common reason why skilled professionals working
in technical areas choose TEX (Knuth, 1988) is that
TEX makes it is easy to produce high quality drafts
and to introduce corrections based on comments
into these, making the edit-publish-feedback loop a
fast and smooth one. This is further encouraged
by the principle of “logical markup” promoted by
formats such as LATEX (Lamport, 1994): this makes
it possible to work with manuscripts with the focus
on contents rather than form. In particular the
facility for mathematical typesetting based on the
structure of formulae means that authors can work
with notions as they think about them in man-
uscripts, using familiar notations and groupings,
deferring fine points of the typesetting until the
latest moment without compromising the quality of
drafts seriously, and —more importantly — without
compromising the quality of the final version at all.
Often it is even possible to use the same source for
typesetting and other purposes. This is a very safe
way of ensuring that the formulae appearing in a
technical report are, indeed, exactly the same used
in computations.

However, in contrast to this pleasant situation
for formulae with textual structures, the treatment
of simple, illustrative pictures is presently seriously
lacking both in convenience and in the quality of the
result. Even on the Internet there is no universally
useful standard for “logical” specification of illus-
trative diagrams.1 The reason for this is probably
that it is rather easy to just compose a “quick and
dirty little picture” by throwing together some ar-
rows, boxes, lines, etc., using a small visual drawing
tool. That the result is usually excessively ugly is
largely ignored (that proper composition of pictures
was an immensely complicated task in traditional
typography is likely to play a role in this matter).

Presently the following statements are represen-
tative for the options for 2-dimensional graphics that
can be used with “portable TEX source documents”
such as submissions, etc.; the choices are listed in
approximate order of frequency in the author’s ex-
perience.

1 The situation is acceptable for complicated 3-
dimensional drawing, however, where several successful stan-
dards exist; one of these, VRML, is even becoming an Internet
standard.

TUGboat, Volume 18 (1997), No. 3 —Proceedings of the 1997 Annual Meeting 151

Kristoffer Høgsbro Rose

“Graphics is not portable!” A textual approxi-
mation will have to do.

“One can do everything with rules!” One can
do wonderful things drawing just horizontal and
vertical lines using TEX rules.

“PostScript is portable graphics!” PostScript
can be used to create the picture as an
encapsulated PostScript (Adobe, 1990) file dis-
tributed along with the article source.

“METAFONT is portable graphics!” Since TEX
is bundled with METAFONT all TEX installa-
tions should have a METAFONT engine. So
all we have to do is draw the graphics with
METAFONT (Knuth, 1986) and generate a font
containing the drawing on each platform.

“Use a custom notation!” Designing an embed-
ded language targeted at expressing the desired
graphics directly in the TEX source without any
constraints as to how the picture is actually
drawn, is the only truly portable form of pic-
ture. It is easy to provide a macro package
that makes actual pictures using the style of
the context as far as possible.

Below we will first survey the five options for a
particular example before we summarise the design

principles for custom embedded languages and show
how the information contained about a drawing
in a well-designed language can be used for other
purposes such as animation.

Survey by Example

Consider the following: the staff of a computing
facility writes a monthly article where tradition has
it that the “current directory structure” is included.
The article is distributed to a number of departe-
mental newsletter editors that are all published with
TEX (of course). The various newsletters are pub-
lished using a variety of styles and fonts and printed
on all sorts of equipment, so portability is a crucial
issue.

Avoiding graphics. The staff can use the first
choice easily, e.g., through the ouput of some stan-
dard tool. The UNIX tree command, e.g., produces
output as shown in figure 1. While this solution is
ugly it is certainly completely portable, and in fact
used more often than not.

Using standard TEX rules. The second choice
is almost as easy to realise and only requires a bit
of hacking. Figure 2 shows what one can produce
easily by substituting parts of the textual form with
appropriate rules and spaces in a TEX \haligns
construction. Such substitution essentially means

xy-3.4

|-- doc

| ‘-- xyguide-html

|-- mfinputs

|-- pkfonts

| |-- ljfour600

| |-- ljfour657

| |-- ljfour720

| ‘-- ljfour864

|-- ps

|-- psfonts

|-- src

|-- texfonts

‘-- texinputs

Figure 1: UNIX tree output.

xy-3.4
doc

xyguide-html
mfinputs
pkfonts

ljfour600
ljfour657
ljfour720
ljfour864

ps
psfonts
src
texfonts
texinputs

Figure 2: UNIX tree output with substitutions.

that we translate the text directly into an appropri-
ate TEX source representation which means that we
need to know how to interpret the text in order to
make a meaningful translation.

PostScript. The (encapsulated) PostScript choice
is often the most practical, and is almost portable—
only a few platforms cannot print PostScript and a
few more cannot preview files with PostScript well.
With PostScript the example tree might look as
shown in figure 3. While the size of the figure can be
changed by scaling it remains difficult to change the
“Times” (or whatever) look of the figure, however,
with an “embedded PostScript” package, such as the
very powerful PSTricks (van Zandt, 1996), one can
reduce this problem somewhat.

METAFONT. This choice is interesting in that all
TEX installations are supposed to have METAFONT

and thus compatibility is not a problem in principle.

152 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Very High Level 2-dimensional Graphics with TEX and XY-pic

xy-3.4
doc

[[[[[[[

xyguide-html
XXXXX

mfinputs

B
B
B
B
B
B
B
B
B

pkfonts

8
8
8
8
8
8
8
8
8
8
8

ljfour600
\\\\\\\

ljfour657

PPPPPPPP

ljfour720

D
D
D
D
D
D
D
D
D

ljfour864

:
:
:
:
:
:
:
:
:
:
:

ps

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

psfonts

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

src

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

texfonts

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

texinputs

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

Figure 3: PostScript picture.

However, it turns out that not all TEX installations
can handle dynamic changes to the repertoire of
fonts gracefully, thus in practice this is less of an
option than one would hope. Two alternatives ex-
ist: using META O T instead relaxes the dynamic
font problem somewhat at the penalty of requiring
the use of PostScript, and using the mfpic pack-
age (Leathrum and Tobin, 1994) makes it possible
to mix METAFONT-generated drawing with TEX-
produced text. These are options that need to be
further invesitigated. In general TEX would benefit
greatly from a component model permitting interac-
tion between the various graphic forms— but this is
beyond the scope of this presentation.

Designing a custom embedded graphic lan-

guage. The fifth and last option is obviously
ideal— once a dedicated language exists for the kind
of graphics in question, that is. The most obvious
way to think of the directory structure is as a tree

with a node for each directory (as hinted at by the
UNIX command name). This leaves us with the
problem of coming up with a good textual notation
for trees. One possible such notation has been used
in figure 4 using parentheses to express the directory
nesting structure.

In this paper we will argue that designing such
very high level drawing languages for embedding

picture descriptions directly in the manuscript is
an option worthwhile pursuing in many cases, even
considering the initial cost of designing and imple-
menting the language.

An Embedded Language

We first explain the principal properties of embed-
ded languages and how this is reflected by our toy

\tree{

{xy-3.4} (

{doc} (

{xyguide-html} ()

)

{mfinputs} ()

{pkfonts} (

{ljfour600} ()

{ljfour657} ()

{ljfour720} ()

{ljfour864} ()

)

{ps} ()

{psfonts} ()

{src} ()

{texfonts} ()

{texinputs} ()

)

}

Figure 4: Directory as abstract tree.

directory tree sample language; we then describe the
implementation of it in TEX.

Principles. There are the two principal properties
that embedded languages should opt for:

Use generic abstract structures. Each custom
embedded language is unique. Chances are,
however, that your users will see several of your
languages. Therefore try to use generic abstract
structures as the “glue” of the language: this
eases both the design and implementation task,
and makes it easier for users to learn and later
remember several embedded languages without
despairing.

Use conservative notation. A custom embedded
language should fit smoothly in with its “host
language.” Use the host language’s notations
whenever possible.

The “abstract structure” of a directory tree is a tree.
Thus we can use standard prefix notation for trees
and write each “branch” as

label (subtree . . . subtree)

where label is the text associated to each node
(for a directory this will be its name) and each
subtree is an entire tree rooted below the present
node (corresponding to subdirectories and files).
Branches with no subtrees are often called “leaves”
but we do not need to distinguish: a leaf can be
written

label ()

TUGboat, Volume 18 (1997), No. 3 —Proceedings of the 1997 Annual Meeting 153

Kristoffer Høgsbro Rose

This constitutes the “glue.” For the nodes we should
try not to extend the TEX notation too much. A
nice and conservative approach is to use the TEX
argument notation, i.e., write the labels as

{text}

to indicate that text should be interpreted as TEX
source text. In fact this is the notation we used in
the directory tree example in figure 4.

Implementation. We will base our implementa-
tion on XY-pic (Rose and Moore, 1997) since this is
a generic platform for 2-dimensional graphics that
works with TEX and can do what we wish to il-
lustrate without compromising the quality of the
typeset drawings. However, the technique used to
produce the actual graphics is not essential as long
as the “library” of available graphics functions is
sufficiently easy to use.

Embedded languages are implemented by writ-
ing a small interpreter that parses the language and
performs the appropriate actions, in this case calls
the appropriate XY-pic drawing primitives. In order
to write such an interpreter we should write the
BNF2 of the language. This looks as follows:

〈tree〉 ::= { 〈text〉 } (〈subtrees〉)

〈subtrees〉 ::= 〈empty〉

| 〈tree〉 〈subtrees〉

The interpreter is then a parser that recognises that
this format is followed and performs an appropriate
action for each recognised symbol.

This implementation will emulate the layout of
the tree command graphically: each label should be
indented relative to its parent and connected to it,
furthermore it should be below the previous label.
This can be described by actions associated to each
symbol as it is encountered: these are shown in
figure 5. This is implemented by the small (plain)
TEX file tree.tex shown in figure 6: the \parser

macro selects the appropriate action based on the
current symbol; each of the \...action macros im-
plements the appropriate action from figure 5 using
XY-pic with the ‘arrow’ extension (for details on how
to use XY-pic refer to the reference manual, Rose
and Moore, 1997). Running this on the source in
figure 4 produces the tree shown in figure 7. The
macros make use of the general font style of the
program, i.e., \baselineskip is used for distances
to fit with the line skips used. Furthermore, some

2 BNF is the notation for “meta-linguistic formulae” first
used by (Naur et al., 1960) to describe the syntax of the Algol
programming language. We use it with the conventions of the
TEXbook (Knuth, 1988): “::=” is read “is defined to be”, “|”
is read “or”, and “〈empty〉” denotes “nothing.”

Symbol Before ⇒ After

{text} empty stack ⇒ text

s0

c ⇒

s0

@A

c

(c ⇒ s0 c

+ grow stack

) empty stack ⇒ error!

s0

c

⇒
c

+ shrink stack

Figure 5: Tree interpreter actions.

components of the state change have been isolated
as definitions — something that is possible with a
generic macro language as TEX; a production ver-
sion of the tree language the layout style of the tree
should also be extracted into definitions. In fact, the
“PostScript” sample of figure 3 was created using
the times package with the redefinition

\def\branch{\save;s0!CD**@{-}\restore}

which tells XY-pic to make a plain line from the
center bottom of the “parent” to the “child.”

Exploiting the structured notation. Being able
to vary the style this way is useful, of course. How-
ever, a common mistake when implementing pack-
ages such as tree is, in the author’s opinion, to
implement an interpreter that is too general. It is
better to think of separate tasks as requiring sepa-
rate embedded languages, implemented by separate
interpreters, even if they happen to have the same
syntax. One can go even further with non-standard

interpretation of the information in the embedded
language. Say that we wish to interpret the notion
of “a tree” in a different way. For example, one could
wish to show how a directory tree like our sample
can be grown. This is slightly more complicated in
that it requires our graphic library to include anima-
tion. This is possible in a (not yet published) module
for XY-pic called movie. With this, animations are
composed of “scenes” within which something varies
from a starting point to an ending point. We can
show growth by having a scene with just the root,
then one level of branches, etc.; at a finer level
we can let the branches grow gradually for greater

154 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Very High Level 2-dimensional Graphics with TEX and XY-pic

% tree.tex: Print \tree{ <tree> } as directory tree.

% Use Xy-pic, including ‘stack empty’ primitive.

\input xy

{\catcode‘\@=11 \global\let\sempty=\sempty@}

\xyoption{arrow}

% Idioms.

\def\FN{\futurelet\next}

\def\DN{\def\next}

\def\SP.{\futurelet\SP\relax}\SP. %

% <tree> parser.

\def\tree#1{\xy \beginaction \FN\parser#1\relax \endaction \endxy}

\def\parser{%

\ifx\SP\next \expandafter\DN\space{\FN\parser}%

\else\ifx\bgroup\next \DN##1{\textaction{##1}\FN\parser}%

\else\ifx(\next \DN({\openaction \FN\parser}%

\else\ifx)\next \DN){\closeaction\FN\parser}%

\else\ifx\relax\next \DN\relax{}%

\else \DN{%

\errmessage{<tree> build from (,), and {text} only: not \meaning\next}}%

\fi\fi\fi\fi\fi \next}

% Initial action : start fresh stack frame.

\def\beginaction{\POS @(}

% Interpretation action for {text} : typeset node and its branch!

\def\textaction#1{\node{#1}\if\sempty\else \branch \fi}

\def\node#1{\drop+!L\txt{#1}}

\def\branch{\ar @{-} ‘l/\jot s0+DC="s0" "s0" }

% Interpretation action for (: move left and down!

\def\openaction{\POS @+c +R+/r1em/ +/d\baselineskip/ }

% Interpretation action for) : move back below parent!

\def\closeaction{\if\sempty \errmessage{too many)s in <tree>}%

\else \POS {;p+/r/:s0;p+/d/,x}@-c \fi}

% Final action : obliterate stack frame.

\def\endaction{\if\sempty\else \errmessage{missing)s in <tree>}\fi

\POS @) }

Figure 6: The tree.tex macros.

TUGboat, Volume 18 (1997), No. 3 —Proceedings of the 1997 Annual Meeting 155

Kristoffer Høgsbro Rose

xy-3.4

doc
��

xyguide-html
��

mfinputs
��

pkfonts
��

ljfour600
��

ljfour657
��

ljfour720
��

ljfour864
��

ps��

psfonts
��

src
��

texfonts
��

texinputs
��

Figure 7: Generated directory tree.

effect. Using the movie class of XY-pic3 one can
produce an animation of the same tree, based on
the same source, by modifying the actions for each
component to draw it in a manner dependent on the
time. The resulting animation can be found in the
electronic version of this paper (Rose, 1997); here
we can merely reproduce the (also automatically
generated) “storyboard” of the animation, shown
in figure 8. The source of the movie is shown
in figure 9: the actions have been enriched with
conditions for hiding leaves until the \level counter
gets higher than their \nesting value, permitting
them to appear. Some extra tricks make this happen
gradually, using the \F construction of the movie

class.

Conclusions

We hope to have shown that TEX is quite naturally
extended with embedded languages and that this
can be a convenient way of

• getting nice pictures and diagrams in papers,

• permitting aesthetic integration of text and di-
agrams, and

• ensuring that the information in the pictures
can be exploited in alternate ways.

Acknowledgements. The author wishes to thank
TUG ’97 and BRICS for jointly funding my partic-
ipation in the conference.

3 Available in an experimental version with XY-pic 3.4.

xy-3.4

Scene 1. Growing directory, level 1.

xy-3.4

doc
��

mfinputs
��

pkfonts
��

ps
��

psfonts
��

src
��

texfonts
��

texinputs
��

Scene 2. Growing directory, level 2.

xy-3.4

doc
��

xyguide-html
��

mfinputs
��

pkfonts
��

ljfour600
��

ljfour657
��

ljfour720
��

ljfour864
��

ps
��

psfonts
��

src
��

texfonts
��

texinputs
��

Scene 3. Growing directory, level 3.

xy-3.4

doc
��

xyguide-html
��

mfinputs
��

pkfonts
��

ljfour600
��

ljfour657
��

ljfour720
��

ljfour864
��

ps
��

psfonts
��

src
��

texfonts
��

texinputs
��

Scene 4. Growing directory, level 4.

Figure 8: Growing the directory tree.

156 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Very High Level 2-dimensional Graphics with TEX and XY-pic

\MovieSetup{height=18em,width=18em}% -*-LaTeX-*- animation of directory tree

\newcount\level

\newcount\nesting

\def\node#1{%

\ifnum \level<\nesting \drop i+!L\txt{#1}%

\else \drop+!L\txt{#1}\fi}

\def\branch{%

\ifnum \level<\nesting

\else \ar @{-} ‘l/\jot s0+DC="x" "x" \fi \relax}

\def\openaction{%

\POS @+c +R+/r1em/ \F\down

\global\advance\nesting by +1 \relax}

\def\down(#1){%

\ifnum \level>\nesting \POS+/d\baselineskip/*{}%

\else\ifnum \level=\nesting \POS+/d#1\baselineskip/*{}\fi\fi \relax}

\def\closeaction{\global\advance\nesting by -1 %

\if\sempty \errmessage{too many)s in <tree>}%

\else \POS {;p+/r/:s0;p+/d/,x}@-c \fi \relax}

\level=0 \loop

\advance\level 1 %

\nesting=1 %

\scene{%

\input{dirtree.tree}%

\caption{Growing directory, level \the\level.}%

}%

\ifnum \level<4 \repeat

Figure 9: The dirtree.texmovie movie.

TUGboat, Volume 18 (1997), No. 3 —Proceedings of the 1997 Annual Meeting 157

Kristoffer Høgsbro Rose

References

Adobe. PostScript Language Reference Manual.
Addison-Wesley, second edition, 1990.

Goossens, Michel, S. Rahtz, and F. Mittelbach. The

LATEX Graphics Companion. Addison-Wesley,
1997.

Knuth, Donald. The TEXbook. Addison-Wesley, sec-
ond edition, 1988.

Knuth, Donald E. The METAFONTbook. Addison-
Wesley, 1986.

Lamport, Leslie. LATEX—A Document Preparation

System. Addison-Wesley, second edition, 1994.

Leathrum, Thomas and G. Tobin. “The mfpic pack-
age”. Available from CTAN: graphics/mfpic,
1994.

Naur, Peter et al.. “Report on the Algorithmic
Language ALGOL 60”. Communications of the

ACM 3, 299–314, 1960.

Rose, Kristoffer H. “Very High Level 2-dimensional
Graphics with TEX and XY-pic”. Available from
http://www.brics.dk/~krisrose/Xy-pic/

tug97/, 1997. Electronic version of TUG97
paper.

Rose, Kristoffer H. and R. R. Moore. “XY-pic release
3.4”. Available from CTAN: macros/generic/

diagrams/xypic, 1997. See also chapter 5 of
(Goossens, Rahtz, and Mittelbach).

van Zandt, Timothy. “The PSTricks package”. Avail-
able from CTAN: graphics/pstricks, 1996. See
also chapter 4 of (Goossens, Rahtz, and Mittel-
bach).

158 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

