
TUGboat, Volume 10 (1989), No. 1

u u
Georgia ICM. Tobin

This short communication presents the code for a

couple of dingbats that the author has found use-
ful in memos and other correspondence. The code is

quite straightforward, and can easily be put to use by

the reader on any METAFONT implementation. De-
spite the simplicity of the code, there are a couple of

interesting things done which I will enlarge upon a
bit when we get to them.

The first part of the code looks like this:

% hands .mf
mode-setup ;

s ize=48pt#;

font-size size;

em#:=size; cap#:=7/10em#; desc#:=3/10em#;

thinline#:=l/iOOern#;

def ine-pixels(em,cap,desc) ;

define-blacker-pixels(thin1ine);

Here we assign values to the height, depth and

width of the character box and define the single pen

size to be used. Since this is a very simple font, there is

no call for overshoots or multiple pens; and the height

and depth of the character box is just expressed as a

fraction of the width.

Now, we define the whole character in a macro:

%Hand pointing right

def handpointing=

% define points for thumb and cuff
x1=x3=1/2[0,1/15w] ;

x2=~5=~4=~23=4/16w;

yl=y2=10/15[-desc,cap] ;

y3=y4=2/l5 [-desc, cap] ;

y5=6/7 Cy4, y21; y23=1/7Cy4, y21;

x6=9.75/16w;

y6=y2;

x7=11.25/16w;

y7=4/5 Cy23, y51;

x8=8.75/16w;

y8=1/4[y7, y6l;

x17=14.5/16~;

y i7=9.25/l5 [-desc ,cap] ;

% find a point at a certain height on
% the curve from 26 to 27
path dummycurve; path dummyline;

x. dummy=1/2 Cx8, x7] ;

y.dummy=yi7;

dummyCurve:=z6~5-~2..~7..tension1.4..z8;

dummyline : =z . dummy--217 ;
zl8=dmyCurve intersectionpoint dummyline;

x16=x17;

y16=y7;

x9=7/16w;

y9=y8;

x10=6/16w;

yi0=2/5 Cy23 ,y51;

% find another point on the

% curve from z6 to 27
x.dummy2=x5;

y.dummy2=yl6;

x.dummy3:=1/2[~8,~71;

y . dummy3=y. dummy2;
dummyLine:=z.dummy3--z.dummy2;

zl2=dummyCurve intersectionpoint dummyline;

% define points for curled fingers

x15=~14=~19=~22=1/3 [xi8 ,xi71 ;

x13=x2o=x21=x12;

yi5=yi6;

y13=yl4=yl5-(yl7-y16);

y2O=y19=yI3-(y17-y16) ;

y21=y22=y20-(y17-y16);

% pick up pen and draw whole image
pickup pencircle scaled thinline;

draw zl--22--z4--z3--cycle;

draw z5(l,i)..tension 1.5..z6

Lz6z5-22 . . . z7..tension 1.4..z8

This document originally printed at 300 dpi.

TUGboat, Volume 10 (1989), No. 1

&z8down..tension3..z9

&zg..tension 1.8..leftzlO;

draw zi8--zl7right..zl6--~7;

draw z7--zl5right..zl4--zl31eft..zl2;

draw z14right..z19--~201eft..zI3;

draw zi9right..z22--~211eft..z20;

draw z21(-1,-l)..tension1.5..~23;

enddef ;

The interesting bits I referred to at the start of

this article are the lines in which z18 and 212 are

defined. zI8 is the point at which the top of the

pointing finger touches the top of the thumb; z12,
the point at which the top of the second finger touches

the underside of the thumb. Notice how METAFONT

calculates the precise point of intersection easily, and
obviates the need for fudging by the user.

Using this macro, we can write the code for a char-

acter depicting a hand pointing right in a few short

lines; these lines, in fact:

beginchar("AW ,16/15em#, cap#,desct) ;

handpoint ing ;

endchar ;

When we run this (and recall, size is set equal to

48 points), we get:

I t would be nice to have a dingbat of a hand iden-

tical to the above except pointing left. We could

describe such a character fairly easily by rewriting

the code with all horizontal coordinates shifted; for

example, the line:

~1=~3=1/2 CO, 1/15wl;

would be rewritten:

xi=x3=1/2 Cw, 14/1Swl;

But, there is a much simpler solution. We can

write a file that redefines endchar in the same way

that I discussed in "The ABC's of Special Effects"

(TUGboat, Vol. 9, No. 1, April 1988, pp. 15-18):

% patternmirror
def pattern=

def endchar=

tracingequations :=I ;

cullit ;

picture normalchar ;

normalchar : =currentpicture ;

picture mirrorimage;

mirrorimage:=normalchar

ref lectedabout ((0,O) , (0 ,h))
shifted (w,O);

currentpicture:=mirrorimage;

scantokens extraendchar;

chardx:=w;

shipit;

if display ing>0 : showit ; f i

endgroup;

enddef ;

enddef ;

This redefinition will, in essence, capture the image

shown above, reflect it about the y-axis, and shift it to

the right by the character width. We can inuut that

file within another character definition, call pattern,

and then call our handpointing routine:

beginchar("B" , l6/i5em#, cap#,desc#) ;
input patt ernmirror;

pattern;

handpointing ;

endchar ;

Running the above (and recall, size is set equal to

48 point) we get:

We can make use of another file providing another

definition of pattern, namely:

% patternlev
def pattern=

def endchar=

tracingequations:=l;

cullit ;

picture phaseona; phaseone=currentpicture;

currentpicture:=nullpicture;

fill (0 ,-desc)--(a ,-desc)--(w , cap)--
(0,cap)--cycle;

cullit ;

picture phasetwo;

phasetwo=currentpicture-phaseone;

currentpicture:=phasetwo;

scantokens extr~endchar;

chardx:=w;

shipit;

if displaying>O: showit; fi

endgroup;

enddef ;

This document originally printed at 300 dpi.

30 TUGboat, Volume 10 (1989), No. 1

enddef ;

This redefinition captures the image drawn above

and removes each pixel in it from an entirely black-

ened character box. As before, we input that file

within another character definition, call pattern and

then call the handpointing routine; thus:

beginchar("cU ,16/15em#, cap#,desc#) ;

input pattern-rev;

pattern ;

handpo int ing ;

endchar ;

and get:

Finally, we can use another file that combines the
features of the previous two patterns:

% patt ernzevmirror . mf
def pattern=

def endchar=

tracingequations :=I;

cullit ;

picture phaseone; phaseone=currentpicture;

currentpicture:=nullpicture;

fill (0,-desc)--(w,-desc)--(w,cap)--

(0,cap)--cycle;

cullit ;

picture phasetwo;

phasetwo=currentpicture-phaseone;

picture phasethree;

phasethree:=phasetwo

reflectedabout ((O,O),(O,h))

shifted (w ,O) ;

currentpicture:=phasethree;

scantokens extraendchar ;

chardx:=w;

shipit ;

if displaying>O: showit ; f i

endgr oup ;

enddef ;

enddef ;

and which, accessed by this code:

beginchar("D",l6/15em#,cap#,desc#);

input pattern-revmirror;

pattern;

handpo int ing ;

endchar ;

gives us the reverse video mirror image of the original

character:

The user can, of course, change the second line

of the code shown above to create the font at any

size desired; you might wish to actually put that line

outside the rest of the code, and simply specify it at

run time.

To create the font, all you need is the code shown

in this article and METAFONT. Start up METAFONT,

specify the device for which you are creating the

font by typing mode=lowres; (or mode= whatever

you wish) and then inputting hands. mf.

This document originally printed at 300 dpi.

