[Sinclair Lewis] felt that his [writing] had suffered in the
thirties because during his marriage to Dorothy Thompson
he had let her talk him into using professional typists to
make the final drafts of his scripts. He now [1943] regretted
following her advice, because he was convinced that if an
author didn’t do his own retyping—revising and improving
as he went—he lost some control over his work. Maybe he
had a good point; William Faulkner and John O’Hara, for
example, did their own typing.

At Random, the reminiscences

of Bennett Cerf,
Random House, 1977, p. 145

TUGBOAT

THE TgX USERS GROUP NEWSLETTER
EDITOR BARBARA BEETON

VOLUME 6, NUMBER 1 . MARCH, 1985
PROVIDENCE + RHODE IsLAND .« U.SA.

ADDISON-WESLEY
Reading, MA 01867
617-944-3700 x2677

AZZARELLO, Arlene

1 P Sharp Associates

220 California Ave

Suite 201

Palo Alto, CA 94306
415-327-1700

BECK, Lawrence A.

Grumman Data Systems

1111 Stewart Ave

MS B14-111

Bethpage, NY 11714
516-575-9838

BEETON, Barbara
American Mathematical Society
P.0. Box 6248
Providence, RI 02940
401-272-9500
bb@SU-AI

BLOCK, Neil

Hughes Aircraft Co.

Bldg. Al, M/S 3C923

P.O. Box 9339

Long Beach, CA 90810
213-513-4891

CARNES, Lance

163 Linden Lane

Mill Vallay, CA 94941
415-388-8853

CHILDS, §. Bert

Dept of Computer Science

Texas A & M University

Coliege Station, TX 77843
409-845-5470

CODE, Maria

Data Processing Services
1371 Sydney Dr
Sunnyvale, CA 94087

CRAWFORD, John M.
Computing Services Center
College of Administrative Science
Ohio State University
Columbus, OH 43210
614-422-1741
CSNet: Crawford-J@Ohio-State
BITNet: TS0135Q0HSTVMA

CUMISKEY, James A.

Bord Failte-Irish Tourist Board

Baggot Street Bridge

Dublin 2, Ireland
+-353-1-765871 x1275

DUPREE, Chuck

Datapoint, Inc.

9725 Datapoint Drive, MS N-22

San Antonio, TX 78284
512-699-7200

EPPSTEIN, David
Arpanet: Eppstein@Columbia-20

Addresses of Officers,

EPPSTEIN, Maureen
Administrative Publication M
Stanford University
Encina Hali, Room 200
Stanford, CA 94305

415-497-9254

Arpanet: MVEppstein@SU-Scors

FUCHS, David

Department of Computer Science

Stanford University

Stanford, CA 94305
415-497-1646
DRFQSU-Score

FURUTA, Richard
Univ of Washington
Computer Science, FR-35
Seattle, WA 98195
206-543-7798
Furuta@Washington

GOODELL, Geil
Educational & Professional Technologies
Division
Addison-Wesley Publishing Co
Reading, MA 01867
617-944-3700

GOUCHER, Raymond E.

TEX Users Group

P.0. Box 9506

Providence, RI 02940
401-272-9500 x232

GROPP, William

Dept of Computer Science

Yaie University

Box 2158 Yale Station

New Haven, CT 06520
203-436-3761
Arpanet: Gropp@Yale

ION, Patrick D.

Mathematical Reviews

611 Church Street

P.0O. Box 8604

Ann Arbor, MI 48107
313-763-6829

JURGENSEN, Heimut

Dept of Computer Science

Univ of Western Ontario

London N6A 5B7, Ontario, Canada
519-679-3039

KELLER, Arthur

Computer Science Dept

Stanford University

408C Margaret Jacks Hall

Stanford, CA 94305
415-497-3227
ARKQSU-AL

KELLY, Bill

Academic Computing Center

University of Wisconsin, Madison

1210 W. Dayton Street

Madison, WI 53708
608-262-9501

KNUTH, Donald E.
Department of Computer Science
Stanford University
Stanford, CA 94305

DEKQSU-AI

Authors and Others

L@FSTEDT, Benedict

RECAU, Build. 540

Ny Munkegads

8000 Aarhus C, Denmark
06-128355

LUCARELLA, Dario

Istituto di Cibernetica

Universitd di Milano

Via -Viotti 3/5

20133 Milano, ltaly
23.52.93

LUVISETTO, M. L.
Istituto Nazionale de Fisica Nucleare
Via Mazzini No 2
40138 Bologna, Italy
051-307572

MacKAY, Pierre A.
University of Washington
Department of Computer Science, FR-35
Seattle, WA 98195
206-543-2386
MacKay@Washington

MALLETT, Rick

Computing Services

Room 1208 Arts Tower

Carleton University

Ottawa (K1S 5B6), Ontario Can
613-231-7145

NICHOLS, Monte C.

Exploratory Chemistry Division

Sandia National Laboratories 8313

Livermore, CA 94550
415-422-2906

PALAIS, Richard S.
Department of Mathematics
Brandeis University
Waltham, MA 02154
617-647-2667

PIZER, Arnold
Department of Mathematics
University of Rochester
Rochester, NY 14627
716-275-4428

PLASS, Susan

Information Technology Services

Cypress Hall, Jordan Quadrangle

Stanford University

Stanford, CA 94305
415-497-3302

PLATT, Craig

Depr of Math & Astronomy

Machray Hall

Univ of Manitoba

Winnipeg R3T 2N2, Manitoba, Canada
204-474-9832

SMITH, Barry
Kellerman & Smith
534 SW Third Ave
Portland, OR 97204
503-222-4234

SOUTHALL, Richard

83 Eastern Avenue

Reading RG1 55Q, UK
(0734)67267

TUGhseat, Volume 6, No.

SPIVAK, Michael
1660 West Alabama, #7
Houston, TX 77006

STROMQUIST, Raiph

MACC

University of Wisconsin

1210 W. Dayton Strest

Madison, W1 53706
608-262-8821

THEDFORD, Rilia

Intergraph Corporation

One Madison Industriai Park

Huntsville, AL 35807
205-772-2000

TOBIN, Georgia K. M.
The Metafoundry
OCLC Online Computer Library Center, Inc
6565 Frantz Rd
Dublin, OH 43017
614-764-6087

TUTTLE, Joey K.

1 P Sharp Associates

220 Caiifornia Avenue

Suite 201

Palo Alto, CA 94306
415-327-1700

UGOLINL E.

Istituto Nazionale de Fisica Nucleare
Via Mazzini No 2

40138 Bologna, Italy

WELLAND, Robert

Dept of Mathematics

Northwestern University

Lunt Hall

Evanston, Il 60201
312-492-3298

WHIDDEN, Samuel B.

American Mathematical Society

P.0O. Box 6248

Providence, Rl 02940
401-272-9500

ZABALA, Ignacio
Centro de Célcoio
Facultades de Ciencias
Universidad de Valencia
Camstera de Ademuz
Vaiencia, Spain
011-34-8-357-4065

ZAPF, Hermann
Seitersweg 35
D-6100 Darmstadt, Fed Rep Germany

TUGboat, the newsletter of the TEX Users Group (TUG), is published irregularly by TUG, P. O. Box 95086,
Providence, RI 02940. Annual dues for individual members of TUG include one subscription to TUGboat; fees
are detailed on the membership form bound into the back of this issue. Applications for membership in TUG
should be addressed to the TEX Users Group, P. O. Box 594, Providence, RI 02901; applications must be
accompanied by payment.

Manuscripts should be submitted to a member of the TUGboat Editorial Committee, whose names and
addresses are listed inside the front cover. Articles of general interest, or not covered by any of the topics listed, as
well as all items submitted on magnetic tape, should be addressed to Barbara Beeton, American Mathematical
Society, P. O. Box 6248, Providence, RI 02940.

Submissions to TUGboat are for the most part reproduced with minimal editing. Any questions regarding
the content or accuracy of particular items should be directed to the authors.

TUGboat, Volume 6 (1985), No. 1

TUG Membership Dues and Privileges
Memberships and Subscriptions

1985 dues for individual members are as follows:
North America:
— New (first-time) members or subscribers: $20.
— Membership and subscription renewals: $30,
reduced rate of $20 for renewals received before January 31, 1985.
Outside North America (includes air mail postage):
— New (first-time) members or subscribers: $25.
~ Membership and subscription renewals: $35,
reduced rate of $20 for renewals received before January 31, 1985.
Membership privileges include all issues of TUGboat published during the
membership (calendar) year. Anyone inquiring about TUG will be sent a
complimentary copy of TUGboat Vol. 1 (1980), No. 1, along with a current copy
of the membership list and forms for acquiring TEX82, joining TUG and ordering
publications available from TUG.
Issues to domestic addresses are mailed third class bulk, which may take up
to six weeks to reach their destinations. If you have not received an issue to which
you are entitled, write to TUG at the address given below.

Institutional Membership

1985 Institutional Membership dues for educational organizations are $200; for
non-educational, $300. Membership privileges include:
- designating up to 5 persons as individual members,
— special reduced rates for participation at TUG meetings and
TEX-related courses and for purchase or lease of videotapes.
In addition, institutional members are acknowledged in each issue of TUGboat.
For further information, call Ray Goucher at (401) 272-9500, ext. 232.

Submitting Items for Publication in TUGboat

The deadline for submitting items for Vol. 6 (1985), No. 2, will be May 15, 1985;
the issue will be madled in mid-July, so that, if possible, copies will be in the hands of
members before the August meeting. Contributions on magnetic tape or in camera
copy form are encouraged; see “Submitting items to TUGboat”, page 78, Vol. 5,
No. 2. Editorial addresses are given on the inside front cover. For instructions on
preparing magnetic tapes or for transferring items directly to the AMS computer,
write or call Barbara Beeton at the address given, (401) 272-9500, ext. 299.

TUGDboat Advertising and Mailing Lists

For information about advertising rates or the purchase of TUG mailing lists,
write or call the TEX Users Group, Attention: Ray Goucher, P.O. Box 9506,
Providence, RI 02940, (401) 272-9500, ext. 232.

General Delivery

MESSAGE FROM THE PRESIDENT
Pierre MacKay

In the past few weeks there has been a great deal of
excitement over the announcements of new printer
systems and software, and some of these announce-
ments may provide the TEX Users Group with an
even clearer role in the solution of one of the most
difficult problems we have continually faced—the
relation between public domain and proprietary
software in a TEX-based document production sys-
tem.

One of the most remarkable things about TEX
is its absolute character as public domain software.
This character is the result of Don Knuth’s personal
decision, and of the general organization of the
site coordinators distribution system. The principal
distributions of TEX are subject to no licensing
restrictions other than those which inhere in the
basic target operating system in which they run. If
you have a computer at all, you probably have an
operating system for it, and that operating system
is certain to be protected by some sort of licensing
agreement. The existence of public domain distri-
butions of TEX does not preclude the development
of other versions with better bells and whistles
which may be tied to further licensing restrictions.
For example, within the UNIX environment there
are at least two compilations of TEX (same TEX,
but different binaries) which depend on the use of
specially licensed Pascal compilers. Each of these
compilations offers significant advantages over the
public domain compilation, and any establishment
which happens to have access to the compilers
may well want to consider reducing the load on its
general computing resources by using a tighter and
more efficient binary executable file. The majority
of academic users, however, will continue to need
the slower, public domain version; first, because spe-
cial licensing inhibits experimentation, and second
because many cannot afford anything but public
domain software. The heart of the TUG effort must
continue to be public domain distributions.

The most serious difficulties in this regard have
always come at the output end of TEX systems, and
recent developments could make the situation worse,
or make it a great deal better. In a few months’
time, METAFONT will come of age and will, like
TEX, be made available through the same public

TUGboat, Volume 6 (1985), No. 1

domain distributions as TEX. But what machines
will it address, and under what restrictions?

This is a very delicate problem. The protection
of font designs and font generation software is
essential for the very survival of any manufacturer
of typesetting equipment. It is entirely reasonable
that the producers of such equipment should guard
and protect their proprietary interest in machine-
specific elements of their product. Such protection
is fundamentally analogous to the licensing control
over basic operating systems in general purpose
computers, and does not, in itself, seriously restrict
the user. Any user who can afford the machine can
afford the essential proprietary operating system
that goes with it. What the TUG community
will need is not access to that, but rather to
some kind of open interface which will support
the public domain features of METAFONT and will
make experimentation possible. Such an interface
is not at all impossible, and it appears that we have
a real hope that it will be provided, for example, in
the case of the new PostScript system. The same
thing could be done for most, and probably for all
digital phototypesetters, in such a way as to retain
and enhance the public domain features of META-
FONT while also preserving the manufacturer’s vital
interest in the security of proprietary software.

ANSI X3V1.8 LIAISON REPORT
TO THE TgX USERS GROUP

Lawrence A. Beck

This is my first report to TUG as X3V1.8 liaison
and I will try to make it as informative as possible.
Just a word about the name change—we used to
be X3J6, but as you will see, there has been a
reorganization.

I’d like to start with a word about my respon-
sibilities within ANSI and ISO. I've been involved
with what was formerly known as ANSI X3J6 and
with its ISO counterpart TC97/SC5/WG12 since
early 1982. I am currently the Vice Chair of X3V1.8
and Secretary of the Task Group that is charged
with developing SGML, X3V1.8.1.

There has been much activity since Lynne
Price last reported to you in the September 1983
TUGboat. I'll discuss the administrative changes
first.

TUGDboat, Volume 6 (1985), No. 1

During 1984, both ISO TC97 and ANSI X3
reorganized and consolidated their Subcommittees
and Technical Advisory Groups. This was done for
two reasons:

1. to take into account converging technologies,
and
2. to cut down on the administrative overhead
caused by having many small separate groups.
Within ISO we started out as part of TC97/SC5 (In-
formation Processing Systems/Programming Lan-
guages). The TC97 reorganization put us into
SC18 — Office Systems, which was then renamed
Text & Office. Systems. TC97/SC5/WG12 became
TC97/3C18/WG8.

Since ANSI X3 tries to mirror the organization
of ISO TC97, X3J6 was merged into X3V1, also
called Office Systems, which was then renamed
Text: Office & Publishing Systems. X3J6 became
X3V1.8 and was named Text Processing Languages.

Also, Mr. Charles D. Card who was the ANSI
Chair and the ISO Convenor resigned both positions
and was replaced by William W. Davis, Jr., of the
U.S. Internal Revenue Service as ANSI Chair and
William W. Tunnicliffe of the Graphic Communica-
tions Association as the ISO Convenor.

Within the area of technical development, we
have continued refinement of the standard and
have released Working Drafts 6-9. In August of
1983, Part 6 of the Standard (Document Markup
Metalanguage — SGML) was released as a GCA
Standard and adopted for trial use by the United
States Department of Defense.

In September 1983, Parts 1, 2, 3, 5 and 6 were
submitted to ISO for ballot to be considered “Draft
Proposed”. The ballot failed as most member
bodies did not feel that Part 3 (Programming
Language) was in any shape to be a standard, and,
in addition, some members did not see a need for a
new programming language.

Part 3 is now being re-evaluated and will
probably be drafted as a set of general language
extensions that could be used to make any block
structured programming language more friendly to
text.

In November 1984, ISO issued ballots covering
Parts 2, 5 and 6 of the Standard (Glossary, For-

matting Functions, and SGML) which asked the

member bodies for authority to issue these parts
as a Draft Proposed Standard. We have every
expectation that this ballot will succeed.

As the ISO adoption process moves along, we
expect that SGML (Standard Generalized Markup
Language) will become very widely used as the
method for interchanging documents. It provides

a coherent and unambiguous syntax for describing
whatever a user chooses to identify within a doc-
ument. Projects have already begun, especially in
Europe, to develop SGML parsers, including one
being done by SOBEMAP in Brussels as part of the
“ESPRIT” program.

We believe that as the use of SGML grows,
various vendors will find it in their interest either to
develop SGML front ends to existing text processing
systems, or, as has been done in some cases, to
develop new integrated systems based on SGML
principles. We hope that TUG will become a
willing partner in these efforts.

ACKNOWLEDGMENT
OF CONTRIBUTIONS

The Officers and Steering Committee gratefully
acknowledge receipt of royalties and other contribu-
tions to TUG from several sources:

1. From the sale of Don Knuth’s TgXbook, royal-
ties of $3,268, with at least $7,000 more still to
come.

2. From David Kellerman and Barry Smith,
of Kellerman & Smith, distributors of the
VAX/VMS version of the WEB sources, along
with some related proprietary software (output
drivers, etc.), royalties of $1,425. They incor-
porated $25 into the price of every copy as a
royalty to be transferred to TUG for “contin-
ued support of projects of interest to the TeX
community”; Barry said they hoped this would
“establish a tradition”.

3. More than 600 copies of Arthur Samuel’s First
Grade TEX sold by TUG in 1984 resulted in
the addition of $5,500 to TUG’s treasury.

4. A contribution of $500 received from David
Rodgers on behalf of Textset, Inc.

TUG sincerely appreciates these very generous con-
tributions.

Samuel B. Whidden, Treasurer

TUGboat, Volume 6 (1985), No. 1

First principles of typographic design for document production
(TUGboat, Vol. 5, No. 2, pp. 79-90): Corrigenda

Richard Southall

Page 83. lines 6 ff.
What happens in text?

Written language contains elements that are not alphabetic or
numeric characters: punctuation signs, and space. It also has
features that seem to operate at a higher level than the words of the
text: capitalization, changes in type style and size, and the presence
of vertical and horizontal space in varying amounts. These elements
and features evidently have some part to play in written language.
and some (but surprisingly few) attempts have been made to identify
their functions (Mountford, 1980; Walker, 1979; Walker, 1983). The
following list of functions is taken from Walker's thesis:

Distinction

particularization (including emphasis)
quotation
interpolation

Abbreviation

Introduction

Omission

Separation and connection
Presentation of numbers

The most significant of these functions seems to be that of
distinction/particularization.

References
Page 89, lines 20-22:

Walker, S.F.

Descriptive techniques for studying verbal graphic language

Unpublished thesis: Department of Typography & Graphic
Communication, University of Reading, England (1983)

TUGboat, Volume 6 (1985), No. 1

Low TEX

Maureen Eppstein
Controller’s Office
Encina 200
Stanford University
Stanford, CA 94305

MVEppstein@SU-Score

The purpose of this new column is to offer a forum
for discussion of design and layout of material using
TeX. It is aimed at the beginning or low-tech
TEX user, although we hope TEXperts will look in
occasionally to help answer questions and contribute
to discussions about design.

I thought we’d start out with a discussion of
letterheads or standard headings you use in your
work. I invite you to send me a copy of the standard
heading you use in your work, along with a listing
of the output routine you use to create it, and a
few words about how you designed it. If you have
questions, send those too, and we'll try to get them
answered for you. I also hope to persuade some
typographic designers to give us pointers on how to
improve our layouts.

To kick off, I'd like to tell you a little about
my own work. At Stanford University I am editor
of the Administrative Guide, a weighty manual
covering administrative organization, policies, and
procedures. Sections of the manual, known as guide
memos, are updated on a piecemeal basis.

The previous editors had manually typeset
these guide memos. I inherited their format (shown
below), which I translated into a TEX output
routine. The design constraints I had were that the
margin at the top of the page should be about half
an inch, and I needed a three-string running head
that contained the date, page number information,
and the Guide Memo number.

The input file for my example is:

\input guidemac

\input guideoutput

\def\date{December 15, 1984}

\def\pgnm{5}

\def\mnum{54.4}

\centerline{\titlefont Rapid
Purchase Orders }

\vskip 1.2cm

\noindent

This Guide Memo outlines ...

My guidemac file contains font information,
page specifications, and a few macros for recurring
layout elements. I use an 11-point computer modern
roman font for the body of the text, with a 14-point
bold title. Guideoutput contains modifications to
the \plainoutput definitions found on page 255 of
the TEXbook.

My first problem was the half-inch margin I
needed at the top of the page; the output device I use
insisted on giving me a more generous allowance.
To trick it, 1 increased the negative \vskip in
the \plainoutput definition for \makeheadline to
—40pt, a number I found by trial and error.

The \plainoutput routine gives a blank top of
the page and a centered page number (in 10-point
CMR) at the bottom. To obtain my top running
head and blank bottom, I redefined \headline and
\footline as follows:

\headline={\elevenrm\line
{\date\hfil Page \folio\ of \pgnm
\hfil Guide Memo \mnum}}

\footline={\hfil}

Then at the beginning of each Guide Memo
file T set \date to the revision date, \pgnm to the
number of pages in the piece, and \mnum to the
Guide Memo’s assigned number. The result is a
serviceable format that matches the existing format
of the manual.

Now it’s your turn. Please send your comments,
questions, and contributions to the address at the
head of this column, either via paper or network
mail.

Deceraber 15, 1984 Page 1 of 5 Guide Memo 54.4

Rapid Purchiase Orders

This Guide Mero oullines basie procedures lor purchases made direclly by departments ol goods or
services lolaling less Uhian $500 per transaction. The objeclives of this procedure are to:

e Assist departments to pug
departments Lo order ¢

Provide more rapic
. Y OTOHLE

(eleraied ordering, rees”
expendable sup

 payment process by allowing

om vendors.

lepar

Fonts

GENERIC FONT FILE FORMAT

This 18 o revised version of the GF file format descrip-
tion published in TUGboat Vol. 5, No. 1, and com-
pletely replaces that document. The present version is
an extract from the WEB METAFONT documentation.

1. Generic font file format. The most impor-
tant output produced by a typical run of META-
FONT is the “generic font” (GF) file that specifies
the bit patterns of the characters that have been
drawn. The term generic indicates that this file
format doesn’t match the conventions of any name-
brand manufacturer; but it is easy to convert GF
files to the special format required by almost all dig-
ital phototypesetting equipment. There’s a strong
analogy between the DVI files written by TEX and
the GF files written by METAFONT; and, in fact,
the file formats have a lot-in-common.

A GF file is a stream of 8-bit bytes that may
be regarded as a series of commands in a machine-
like language. The first byte of each command
is the operation code, and this code is followed
by zero or more bytes that provide parameters to
the command. The parameters themselves may
consist of several consecutive bytes; for example,
the ‘boc’ (beginning of character) command has
six parameters, each of which is four bytes long.
Parameters are usually regarded as nonnegative
integers; but four-byte-long parameters can be
either positive or negative, hence they range in
value from ~23! to 23! — 1. As in TFM files, numbers
that occupy more than one byte position appear in
BigEndian order, and negative numbers appear in
two’s complement notation.

A GF file consists of a “preamble,” followed by
a sequence of one or more “characters,” followed
by a “postamble.” The preamble is simply a pre
command, with its parameters that introduce the
file; this must come first. Each “character” consists
of a boc command, followed by any number of other
commands that specify “black” pixels, followed by
an eoc command. The characters appear in the
order that METAFONT generated them. If we
ignore no-op commands (which are allowed between
any two commands in the file), each eoc command
is immediately followed by a boc command, or by a
post command; in the latter case, there are no more
characters in the file, and the remaining bytes form

TUGboat, Volume 6 (1985), No. 1

the postamble. Further details about the postamble
will be explained later. '

Some parameters in GF commands are “point-
ers.” These are four-byte quantities that give the
location number of some other byte in the file; the
first file byte is number 0, then comes number 1,
and so on.

2. The GF format is intended to be both compact
and easily interpreted by a machine. Compactness is
achieved by making most of the information relative
instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of
two quantities: (a) the current column number, m;
and (b) the current row number, n. These are 32-bit
signed integers, although most actual font formats
produced from GF files will need to curtail this vast
range because of practical limitations. (METAFONT
output will never allow |m/| or |n| to get extremely
large, but the GF format tries to be more general.)

How do GF’'s row and column numbers corre-
spond to the conventions of TEX and METAFONT?
Well, the “reference point” of a character, in TEX’s
view, is considered to be at the lower left corner of
the pixel in row 0 and column 0. This point is the
intersection of the baseline with the left edge of the
type; it corresponds to location (0,0) in METAFONT
programs. Thus the pixel in GF row 0 and column 0
is METAFONT s unit square, comprising the region
of the plane whose coordinates both lie between 0
and 1. The pixel in GF row n and column m consists
of the points whose METAFONT coordinates (z,y)
satisfy m <z <m+1and n <y <n+1. Negative
values of m and z correspond to columns of pixels
left of the reference point; negative values of n and y
correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of
the current state, namely the paint_switch, which is
always either black or white. Each paint command
advances m by a specified amount d, and blackens
the intervening pixels if paint_switch = black; then
the paint_switch changes to the opposite state.
GF’s commands are designed so that m will never
decrease within a row, and n will never increase
within a character; hence there is no way to whiten
a pixel that has been blackened.

3. Here is a list of all the commands that may
appear in a GF file. Each command is specified by
its symbolic name (e.g., boc), its opcode byte (e.g.,
67), and its parameters (if any). The parameters
are followed by a bracketed number telling how
many bytes they occupy; for example, ‘d[2]’ means
that parameter d is two bytes long.

TUGboat, Volume 6 (1985), No. 1

paint_0 0. This is a paint command with d = 0; it does nothing but change the
pasnt_switch from black to white or vice versa.

paint_1 through paint_63 (opcodes 1 to 63). These are paint commands with
d = 1 to 63, defined as follows: If paint_switch = black, blacken d pixels of the
current row n, in columns m through m 4+ d — 1 inclusive. Then, in any case,
complement the paint_switch and advance m by d.

paintl 64 d[1]. This is a paint command with a specified value of d; METRFONT
uses it to paint when 64 < d < 256.

paint2 65 d[2]. Same as paintl, but d can be as high as 65535.

paint8 66 d[3]. Same as paint!, but d can be as high as 224 — 1. METAFONT never
needs this command, and it is hard to imagine anybody making practical use
of it; surely a more compact encoding will be desirable when characters can
be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min-m[4] maz_m[4] min_n[4] maz_n[4]. Beginning of a character:
Here ¢ is the character code, and p points to the previous character beginning
(if any) for characters having this code number modulo 256. (The pointer p
is —1 if there was no prior character with an equivalent code.) The values of
registers m and n defined by the instructions that follow for this character
must satisfy min.m < m < maz-m and min.n < n < maz.n. (The values
of maz.m and min.n need not be the tightest bounds possible.) When a
GF-reading program sees a boc, it can use min.m, maz.m, min_n, and maez_n
to initialize the bounds of an array. Then it sets m_min_m, n_maz_n, and
paint_switch_white.

bocl 68 c[1] del.m[1] maz.m[1] del.n[1l] maz_n{l]. Same as boc, but p is assumed
to be —1; also del.m = maz_m — min_m and del.n = maz_n — min_n are given
instead of min_m and min_n. The one-byte parameters must be between 0
and 255, inclusive. (This abbreviated boc saves 19 bytes per character, in
common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for
this character. In particular, a completely blank character might have eoc
immediately following boc.

skip0 70. Decrease n by 1 and set m_min_m, paint_switch.white. (This finishes

one row and begins another, ready to whiten the leftmost pixel in the new
row.)

skipl 71 d[1]. Decrease n by d + 1, set m_min_m, and set paint_switch-white. This
is a way to produce d all-white rows.

skip2 72 d[2]. Same as skip1, but d can be as large as 65535.

skipd 73 d[3]. Same as skipl, but d can be as large as 22 — 1. METAFONT
obviously never needs this command.

new-row-0 74. Decrease n by 1 and set m_min.m, paint_switch-black. (This
finishes one row and begins another, ready to blacken the leftmost pixel in the
new row.)

new_row-1 through new_row.164 (opcodes 75 to 238). Same as new_row.0, but
with m_min_m + 1 through min_m + 164, respectively.

zgrzl 239 k[1] z[k]. This command is undefined in general; it functions as
a (k + 2)-byte no_op unless special GF-reading programs are being used.
METAFONT generates zzz commands when encountering a special string;
this occurs in the GF file only between characters, after the preamble, and
before the postamble. However, zzz commands might appear anywhere in
GF files generated by other processors. It is recommended that x be a string

10

TUGboat, Volume 6 (1985), No. 1

having the form of a keyword followed by possible parameters relevant to that
keyword.

zzz2 240 k(2] z[k]. Like zzz1, but 0 < k < 65536.
zzz8 241 k(3] z[k]. Like zzzl, but 0 < k < 2?4, METAFONT uses this when
sending a special string whose length exceeds 255.

zxz4 242 k(4] z[k]. Like zzzl, but k can be ridiculously large; k mustn’t be
negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no.op
unless special GF-reading programs are being used. METAFONT puts scaled
numbers into yyy’'s, as a result of numspecial commands; the intent is to
provide numeric parameters to zzz commands that immediately precede.

no.op 244. No operation, do nothing. Any number of no_op’s may occur between
GF commands, but a no_op cannot be inserted between a command and its
parameters or between two parameters.

char_loc 245 c[1] dz[4] dy[4] w[4] p[4]. This command will appear only in the
postamble, which will be explained shortly.

char_locO 246 c[1] dm[1] w[4] p[4]. Same as char_loc, except that dy is assumed to
be zero, and the value of dz is taken to be 65536 * dm, where 0 < dm < 256.

pre 247 3[1] k[1] z[k]. Beginning of the preamble; this must come at the very
beginning of the file. Parameter ¢ is an identifying number for GF format,
currently 131. The other information is merely commentary; it is not given
special interpretation like zzz commands are. (Note that zzz commands may
immediately follow the preamble, before the first boc.)

post 248. Beginning of the postamble, see below.

post_post 249. Ending of the postamble, see below.

Commands 250-255 are undefined at the present time.’

define gf.id_byte = 131 {identifies the kind of GF files described here }

4. Here are the opcodes that METRFONT actually refers to.
define paint.0 =0 {beginning of the paint commands }
define paintl = 64 '

{ move right a given number of columns, then black < white }
define boc = 67 {beginning of a character }
define bocl =68 {short form of boc }
define eoc =69 {end of a character }
define skip0 =70 {skip no blank rows }
define skip? =71 {skip over blank rows }
define new_row.0 = 74 {move down one row and then right }
define zzz1 =239 {for special strings }
define zzz8 = 241 {for long special strings }
define yyy = 243 {for numspecial numbers }
define char_loc = 245 {character locators in the postamble }
define pre = 247 {preamble }
define post = 248 { postamble beginning }
define post_post = 249 { postamble ending }

5. The last character in a GF file is followed by ‘post’; this command introduces the
postamble, which summarizes important facts that METAFONT has accumulated.
The postamble has the form

post p[4] ds[4] cs[4] hppp[4] vppp[4] min-m[4] maz-m[4] min.n[4] maz_n[4]

(character locators)

post_post q[4] ¢[1] 223’s[>4]

TUGboat, Volume 6 (1985), No. 1

Here p is a poimter to the byte following the
final eoc in the file (or to the byte following the
preamble, if there are no characters); it can be
used to locate the beginning of zrzr commands
that might have preceded the postamble. The ds
and c¢s parameters give the design size and check
sum, respectively, which are exactly the values
put into the header of the TFM file that META-
FONT produces (or would produce) on this run.
Parameters hppp and vppp are the ratios of pixels
per point, horizontally and vertically, expressed as
scaled integers (i.e., multiplied by 2!6); they can
be used to correlate the font with specific device
resolutions, magnifications, and “at sizes.” Then
come man.m, maz.m, min_n, and maz_n, which
bound the values that registers m and n assume in
all characters in this GF file. (These bounds need
not be the best possible; maz_.m and min_n may, on
the other hand, be tighter than the similar bounds
in boc commands. For example, some character
may have min.n = —100 in its boc, but it might
turn out that n never gets lower than —50 in any
character; then min_n can have any value < —50.
If there are no characters in the file, it’s possible to
have min-m > maz.m and/or min.n > maz_n.)

6. Character locators are introduced by char_loc
commands, which specify a character residue c,
character escapements (dz, dy), a character width w,
and a pointer p to the beginning of that character.
(If two or more characters have the same code ¢
modulo 256, only the last will be indicated; the
others can be located by following backpointers.
Characters whose codes differ by a multiple of 256
are assumed to share the same font metric infor-
mation, hence the TFM file contains only residues
of character codes modulo 256. This convention
is intended for oriental languages, when there are
many character shapes but few distinct widths.)

The character escapements (dz,dy) are the
values of METAFONT’s chardx and chardy pa-
rameters; they are in units of scaled pixels; i.e.,
dz is in horizontal pixel units times 26, and dy
is in vertical pixel units times 2!6. This is the
intended amount of displacement after typesetting
the character; for DVI files, dy should be zero, but
other document file formats allow nonzero vertical
escapement.

The character width w duplicates the informa-
tion in the TFM file; it is a fiz_word value relative
to the design size, and it should be independent of
magnification.

The backpointer p points to the character’s boc,
or to the first of a sequence of consecutive zzzx or
yyy or no_op commands that immediately precede

11

the boc, if such commands exist; such “special”
commands essentially belong to the characters,
while the special commands after the final character
belong to the postamble (i.e., to the font as a
whole). This convention about p applies also to
the backpointers in boc commands, even though it
wasn’t explained in the description of boc.

Pointer p might be —1 if the character exists
in the TFM file but not in the GF file. This unusual
situation can arise in METAFONT output if the
user had proofing < 0 when the character was being
shipped out, but then made proofing > 0 in order
to get a GF file.

7. The last part of the postamble, following the
post.post byte that signifies the end of the character
locators, contains ¢, a pointer to the post command
that started the postamble. An identification byte,
1, comes next; this currently equals 131, as in the
preamble.

The 7 byte is followed by four or more bytes
that are all equal to the decimal number 223 (i.e.,
‘837 in octal). METAFONT puts out four to seven
of these trailing bytes, until the total length of the
file is a multiple of four bytes, since this works out
best on machines that pack four bytes per word;
but any number of 223’s is allowed, as long as there
are at least four of them. In effect, 223 is a sort of
signature that is added at the very end.

This curious way to finish off a GF file makes
it feasible for GF-reading programs to find the
postamble first, on most computers, even though
METAFONT wants to write the postamble last.
Most operating systems permit random access to
individual words or bytes of a file, so the GF reader
can start at the end and skip backwards over the
223’s until finding the identification byte. Then it
can back up four bytes, read g, and move to byte ¢
of the file. This byte should, of course, contain the
value 248 (post); now the postamble can be read,
so the GF reader can discover all the information
needed for individual characters.

Unfortunately, however, standard PASCAL does
not include the ability to access a random position
in a file, or even to determine the length of a file.
Almost all systems nowadays provide the necessary
capabilities, so GF format has been designed to work
most efficiently with modern operating systems.
But if GF files have to be processed under the re-
strictions of standard PASCAL, one can simply read
them from front to back. This will be adequate for
most applications. However, the postamble-first ap-
proach would facilitate a program that merges two
GF files, replacing data from one that is overridden
by corresponding data in the other.

onoan

